MACHINELEARNING_RU Telegram 2975
Forwarded from Machinelearning
🧠 mem-agent — агент с памятью в стиле Obsidian

Лёгкая LLM-модель, которая умеет хранить знания в человеко-читаемой памяти (Markdown-файлы) и использовать их для ответов. Агент не просто отвечает на запросы, а действительно «помнит» факты и обновляет их по ходу работы.

Это агент на 4B с локальной, совместимой памятью для Claude, ChatGPT и LM Studio.

Как работает память:
- Вся информация лежит в Markdown: memory/user.md и отдельные файлы для сущностей.
- Связи между файлами сделаны как в Obsidian: [[entity]].
- Агент может извлекать факты, обновлять их или задавать уточняющие вопросы, если запрос неполный.

Вместо огромных контекстов и упора в лимиты, Mem-Agent извлекает нужные фрагменты из локальных документов, сжимает их и передаёт агенту.

Как обучали:
- Базовая модель: Qwen3-4B-Thinking-2507.
- Использовали метод онлайн-RL (GSPO).
- Тестировали на md-memory-bench.

Результаты:
- mem-agent уверенно решает задачи памяти, близко к уровню больших моделей.
- Даже в сжатых версиях (4-bit и 8-bit) сохраняет почти то же качество.

Чем хорош:
- Память можно читать и редактировать вручную.
- Агент работает быстро и эффективно, даже в маленьком размере.
- Удобен как компонент в более крупных системах (например, через MCP).

🟠Model: https://huggingface.co/driaforall/mem-agent
🟠Blog: https://huggingface.co/blog/driaforall/mem-agent
🟠Repo: https://github.com/firstbatchxyz/mem-agent-mcp

@ai_machinelearning_big_data


#LLM #AI #Agents #MemAgent #Dria #MCP #LocalAI
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍2



tgoop.com/machinelearning_ru/2975
Create:
Last Update:

🧠 mem-agent — агент с памятью в стиле Obsidian

Лёгкая LLM-модель, которая умеет хранить знания в человеко-читаемой памяти (Markdown-файлы) и использовать их для ответов. Агент не просто отвечает на запросы, а действительно «помнит» факты и обновляет их по ходу работы.

Это агент на 4B с локальной, совместимой памятью для Claude, ChatGPT и LM Studio.

Как работает память:
- Вся информация лежит в Markdown: memory/user.md и отдельные файлы для сущностей.
- Связи между файлами сделаны как в Obsidian: [[entity]].
- Агент может извлекать факты, обновлять их или задавать уточняющие вопросы, если запрос неполный.

Вместо огромных контекстов и упора в лимиты, Mem-Agent извлекает нужные фрагменты из локальных документов, сжимает их и передаёт агенту.

Как обучали:
- Базовая модель: Qwen3-4B-Thinking-2507.
- Использовали метод онлайн-RL (GSPO).
- Тестировали на md-memory-bench.

Результаты:
- mem-agent уверенно решает задачи памяти, близко к уровню больших моделей.
- Даже в сжатых версиях (4-bit и 8-bit) сохраняет почти то же качество.

Чем хорош:
- Память можно читать и редактировать вручную.
- Агент работает быстро и эффективно, даже в маленьком размере.
- Удобен как компонент в более крупных системах (например, через MCP).

🟠Model: https://huggingface.co/driaforall/mem-agent
🟠Blog: https://huggingface.co/blog/driaforall/mem-agent
🟠Repo: https://github.com/firstbatchxyz/mem-agent-mcp

@ai_machinelearning_big_data


#LLM #AI #Agents #MemAgent #Dria #MCP #LocalAI

BY Машинное обучение RU





Share with your friend now:
tgoop.com/machinelearning_ru/2975

View MORE
Open in Telegram


Telegram News

Date: |

The imprisonment came as Telegram said it was "surprised" by claims that privacy commissioner Ada Chung Lai-ling is seeking to block the messaging app due to doxxing content targeting police and politicians. The best encrypted messaging apps Select “New Channel” Other crimes that the SUCK Channel incited under Ng’s watch included using corrosive chemicals to make explosives and causing grievous bodily harm with intent. The court also found Ng responsible for calling on people to assist protesters who clashed violently with police at several universities in November 2019. Telegram Android app: Open the chats list, click the menu icon and select “New Channel.”
from us


Telegram Машинное обучение RU
FROM American