MACHINELEARNING_RU Telegram 2973
Forwarded from Machinelearning
🧠 mem-agent — агент с памятью в стиле Obsidian

Лёгкая LLM-модель, которая умеет хранить знания в человеко-читаемой памяти (Markdown-файлы) и использовать их для ответов. Агент не просто отвечает на запросы, а действительно «помнит» факты и обновляет их по ходу работы.

Это агент на 4B с локальной, совместимой памятью для Claude, ChatGPT и LM Studio.

Как работает память:
- Вся информация лежит в Markdown: memory/user.md и отдельные файлы для сущностей.
- Связи между файлами сделаны как в Obsidian: [[entity]].
- Агент может извлекать факты, обновлять их или задавать уточняющие вопросы, если запрос неполный.

Вместо огромных контекстов и упора в лимиты, Mem-Agent извлекает нужные фрагменты из локальных документов, сжимает их и передаёт агенту.

Как обучали:
- Базовая модель: Qwen3-4B-Thinking-2507.
- Использовали метод онлайн-RL (GSPO).
- Тестировали на md-memory-bench.

Результаты:
- mem-agent уверенно решает задачи памяти, близко к уровню больших моделей.
- Даже в сжатых версиях (4-bit и 8-bit) сохраняет почти то же качество.

Чем хорош:
- Память можно читать и редактировать вручную.
- Агент работает быстро и эффективно, даже в маленьком размере.
- Удобен как компонент в более крупных системах (например, через MCP).

🟠Model: https://huggingface.co/driaforall/mem-agent
🟠Blog: https://huggingface.co/blog/driaforall/mem-agent
🟠Repo: https://github.com/firstbatchxyz/mem-agent-mcp

@ai_machinelearning_big_data


#LLM #AI #Agents #MemAgent #Dria #MCP #LocalAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍2



tgoop.com/machinelearning_ru/2973
Create:
Last Update:

🧠 mem-agent — агент с памятью в стиле Obsidian

Лёгкая LLM-модель, которая умеет хранить знания в человеко-читаемой памяти (Markdown-файлы) и использовать их для ответов. Агент не просто отвечает на запросы, а действительно «помнит» факты и обновляет их по ходу работы.

Это агент на 4B с локальной, совместимой памятью для Claude, ChatGPT и LM Studio.

Как работает память:
- Вся информация лежит в Markdown: memory/user.md и отдельные файлы для сущностей.
- Связи между файлами сделаны как в Obsidian: [[entity]].
- Агент может извлекать факты, обновлять их или задавать уточняющие вопросы, если запрос неполный.

Вместо огромных контекстов и упора в лимиты, Mem-Agent извлекает нужные фрагменты из локальных документов, сжимает их и передаёт агенту.

Как обучали:
- Базовая модель: Qwen3-4B-Thinking-2507.
- Использовали метод онлайн-RL (GSPO).
- Тестировали на md-memory-bench.

Результаты:
- mem-agent уверенно решает задачи памяти, близко к уровню больших моделей.
- Даже в сжатых версиях (4-bit и 8-bit) сохраняет почти то же качество.

Чем хорош:
- Память можно читать и редактировать вручную.
- Агент работает быстро и эффективно, даже в маленьком размере.
- Удобен как компонент в более крупных системах (например, через MCP).

🟠Model: https://huggingface.co/driaforall/mem-agent
🟠Blog: https://huggingface.co/blog/driaforall/mem-agent
🟠Repo: https://github.com/firstbatchxyz/mem-agent-mcp

@ai_machinelearning_big_data


#LLM #AI #Agents #MemAgent #Dria #MCP #LocalAI

BY Машинное обучение RU





Share with your friend now:
tgoop.com/machinelearning_ru/2973

View MORE
Open in Telegram


Telegram News

Date: |

How to Create a Private or Public Channel on Telegram? Administrators Judge Hui described Ng as inciting others to “commit a massacre” with three posts teaching people to make “toxic chlorine gas bombs,” target police stations, police quarters and the city’s metro stations. This offence was “rather serious,” the court said. “Hey degen, are you stressed? Just let it all out,” he wrote, along with a link to join the group. Unlimited number of subscribers per channel
from us


Telegram Машинное обучение RU
FROM American