AI_MACHINELEARNING_BIG_DATA Telegram 8543
🧠 mem-agent — агент с памятью в стиле Obsidian

Лёгкая LLM-модель, которая умеет хранить знания в человеко-читаемой памяти (Markdown-файлы) и использовать их для ответов. Агент не просто отвечает на запросы, а действительно «помнит» факты и обновляет их по ходу работы.

Это агент на 4B с локальной, совместимой памятью для Claude, ChatGPT и LM Studio.

Как работает память:
- Вся информация лежит в Markdown: memory/user.md и отдельные файлы для сущностей.
- Связи между файлами сделаны как в Obsidian: [[entity]].
- Агент может извлекать факты, обновлять их или задавать уточняющие вопросы, если запрос неполный.

Вместо огромных контекстов и упора в лимиты, Mem-Agent извлекает нужные фрагменты из локальных документов, сжимает их и передаёт агенту.

Как обучали:
- Базовая модель: Qwen3-4B-Thinking-2507.
- Использовали метод онлайн-RL (GSPO).
- Тестировали на md-memory-bench.

Результаты:
- mem-agent уверенно решает задачи памяти, близко к уровню больших моделей.
- Даже в сжатых версиях (4-bit и 8-bit) сохраняет почти то же качество.

Чем хорош:
- Память можно читать и редактировать вручную.
- Агент работает быстро и эффективно, даже в маленьком размере.
- Удобен как компонент в более крупных системах (например, через MCP).

🟠Model: https://huggingface.co/driaforall/mem-agent
🟠Blog: https://huggingface.co/blog/driaforall/mem-agent
🟠Repo: https://github.com/firstbatchxyz/mem-agent-mcp

@ai_machinelearning_big_data


#LLM #AI #Agents #MemAgent #Dria #MCP #LocalAI
Please open Telegram to view this post
VIEW IN TELEGRAM
👍102🔥3627😈2❤‍🔥1💘1



tgoop.com/ai_machinelearning_big_data/8543
Create:
Last Update:

🧠 mem-agent — агент с памятью в стиле Obsidian

Лёгкая LLM-модель, которая умеет хранить знания в человеко-читаемой памяти (Markdown-файлы) и использовать их для ответов. Агент не просто отвечает на запросы, а действительно «помнит» факты и обновляет их по ходу работы.

Это агент на 4B с локальной, совместимой памятью для Claude, ChatGPT и LM Studio.

Как работает память:
- Вся информация лежит в Markdown: memory/user.md и отдельные файлы для сущностей.
- Связи между файлами сделаны как в Obsidian: [[entity]].
- Агент может извлекать факты, обновлять их или задавать уточняющие вопросы, если запрос неполный.

Вместо огромных контекстов и упора в лимиты, Mem-Agent извлекает нужные фрагменты из локальных документов, сжимает их и передаёт агенту.

Как обучали:
- Базовая модель: Qwen3-4B-Thinking-2507.
- Использовали метод онлайн-RL (GSPO).
- Тестировали на md-memory-bench.

Результаты:
- mem-agent уверенно решает задачи памяти, близко к уровню больших моделей.
- Даже в сжатых версиях (4-bit и 8-bit) сохраняет почти то же качество.

Чем хорош:
- Память можно читать и редактировать вручную.
- Агент работает быстро и эффективно, даже в маленьком размере.
- Удобен как компонент в более крупных системах (например, через MCP).

🟠Model: https://huggingface.co/driaforall/mem-agent
🟠Blog: https://huggingface.co/blog/driaforall/mem-agent
🟠Repo: https://github.com/firstbatchxyz/mem-agent-mcp

@ai_machinelearning_big_data


#LLM #AI #Agents #MemAgent #Dria #MCP #LocalAI

BY Machinelearning





Share with your friend now:
tgoop.com/ai_machinelearning_big_data/8543

View MORE
Open in Telegram


Telegram News

Date: |

So far, more than a dozen different members have contributed to the group, posting voice notes of themselves screaming, yelling, groaning, and wailing in various pitches and rhythms. Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators. bank east asia october 20 kowloon ‘Ban’ on Telegram The creator of the channel becomes its administrator by default. If you need help managing your channel, you can add more administrators from your subscriber base. You can provide each admin with limited or full rights to manage the channel. For example, you can allow an administrator to publish and edit content while withholding the right to add new subscribers.
from us


Telegram Machinelearning
FROM American