AI_MACHINELEARNING_BIG_DATA Telegram 6718
🔥 VideoLLaMA 3: Frontier Multimodal Foundation Models for Video Understanding


VideoLLaMA - это серия мультимодальных моделей (MLLM), разработанных для различных задач понимания изображений и видео!

🌟 Модели поддерживают возможности обработки текста, изображений и видео.

Модели подойдут для создания универсальных приложений, способных решать широкий спектр задач, связанных с анализом визуальной информации.

🖐️Результаты 7B модели: DocVQA: 94,9, MathVision: 26,2, VideoMME: 66,2/70,3, MLVU: 73,0
🤏 Результаты 2B-модели для мобильных устройств: MMMU: 45.3, VideoMME: 59.6/63.4

🔐 Лицензирование: Apache-2.0

Github: https://github.com/DAMO-NLP-SG/VideoLLaMA3
Image Demo: https://huggingface.co/spaces/lixin4ever/VideoLLaMA3-Image
Video Demo: https://huggingface.co/spaces/lixin4ever/VideoLLaMA3

@ai_machinelearning_big_data

#video #MLLM #opensource #VideoLLaMA #VideoUnderstanding
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4713🔥12👏1



tgoop.com/ai_machinelearning_big_data/6718
Create:
Last Update:

🔥 VideoLLaMA 3: Frontier Multimodal Foundation Models for Video Understanding


VideoLLaMA - это серия мультимодальных моделей (MLLM), разработанных для различных задач понимания изображений и видео!

🌟 Модели поддерживают возможности обработки текста, изображений и видео.

Модели подойдут для создания универсальных приложений, способных решать широкий спектр задач, связанных с анализом визуальной информации.

🖐️Результаты 7B модели: DocVQA: 94,9, MathVision: 26,2, VideoMME: 66,2/70,3, MLVU: 73,0
🤏 Результаты 2B-модели для мобильных устройств: MMMU: 45.3, VideoMME: 59.6/63.4

🔐 Лицензирование: Apache-2.0

Github: https://github.com/DAMO-NLP-SG/VideoLLaMA3
Image Demo: https://huggingface.co/spaces/lixin4ever/VideoLLaMA3-Image
Video Demo: https://huggingface.co/spaces/lixin4ever/VideoLLaMA3

@ai_machinelearning_big_data

#video #MLLM #opensource #VideoLLaMA #VideoUnderstanding

BY Machinelearning









Share with your friend now:
tgoop.com/ai_machinelearning_big_data/6718

View MORE
Open in Telegram


Telegram News

Date: |

Content is editable within two days of publishing In 2018, Telegram’s audience reached 200 million people, with 500,000 new users joining the messenger every day. It was launched for iOS on 14 August 2013 and Android on 20 October 2013. The SUCK Channel on Telegram, with a message saying some content has been removed by the police. Photo: Telegram screenshot. Co-founder of NFT renting protocol Rentable World emiliano.eth shared the group Tuesday morning on Twitter, calling out the "degenerate" community, or crypto obsessives that engage in high-risk trading.
from us


Telegram Machinelearning
FROM American