PROGLIB_ACADEMY Telegram 3202
How to: как «на самом деле» работает Dropout

Если вы думаете, что Dropout просто обнуляет часть нейронов, это лишь половина правды. Есть ещё один важный шаг, который делает обучение стабильным.

Разберёмся на примере:
— Представьте, что у нас есть 100 нейронов в предыдущем слое, все с активацией 1.
— Все веса соединений с нейроном A в следующем слое равны 1.
— Dropout = 50% — половина нейронов отключается во время обучения.

Что происходит:
— Во время обучения: половина нейронов выключена, так что вход нейрона A ≈ 50.
— Во время inference: Dropout не применяется, вход A = 100.

Проблема:
Во время обучения нейрон получает меньший вход, чем во время inference. Это создаёт дисбаланс и может ухудшить обобщающую способность сети.

Секретный шаг Dropout:
Чтобы это исправить, Dropout масштабирует оставшиеся активации во время обучения на коэффициент 1/(1-p), где p — доля отключённых нейронов.

— Dropout = 50% (p = 0.5).
— Вход 50 масштабируется: 50 / (1 - 0.5) = 100.

Теперь во время обучения вход нейрона A примерно соответствует тому, что он получит при inference. Это делает поведение сети стабильным.

Проверим на практике:
import torch
import torch.nn as nn

dropout = nn.Dropout(p=0.5)
tensor = torch.ones(100)

# Обучение (train mode)
print(dropout(tensor).sum()) # ~100 (масштабировано)

# Вывод (eval mode)
dropout.eval()
print(dropout(tensor).sum()) # 100 (без Dropout)


В режиме обучения оставшиеся значения увеличиваются, в режиме inference — нет.

Вывод:
Dropout не просто отключает нейроны — он ещё масштабирует оставшиеся активации, чтобы модель обучалась корректно.

🏃‍♀️ Proglib Academy

#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🙏1👾1



tgoop.com/proglib_academy/3202
Create:
Last Update:

How to: как «на самом деле» работает Dropout

Если вы думаете, что Dropout просто обнуляет часть нейронов, это лишь половина правды. Есть ещё один важный шаг, который делает обучение стабильным.

Разберёмся на примере:
— Представьте, что у нас есть 100 нейронов в предыдущем слое, все с активацией 1.
— Все веса соединений с нейроном A в следующем слое равны 1.
— Dropout = 50% — половина нейронов отключается во время обучения.

Что происходит:
— Во время обучения: половина нейронов выключена, так что вход нейрона A ≈ 50.
— Во время inference: Dropout не применяется, вход A = 100.

Проблема:
Во время обучения нейрон получает меньший вход, чем во время inference. Это создаёт дисбаланс и может ухудшить обобщающую способность сети.

Секретный шаг Dropout:
Чтобы это исправить, Dropout масштабирует оставшиеся активации во время обучения на коэффициент 1/(1-p), где p — доля отключённых нейронов.

— Dropout = 50% (p = 0.5).
— Вход 50 масштабируется: 50 / (1 - 0.5) = 100.

Теперь во время обучения вход нейрона A примерно соответствует тому, что он получит при inference. Это делает поведение сети стабильным.

Проверим на практике:

import torch
import torch.nn as nn

dropout = nn.Dropout(p=0.5)
tensor = torch.ones(100)

# Обучение (train mode)
print(dropout(tensor).sum()) # ~100 (масштабировано)

# Вывод (eval mode)
dropout.eval()
print(dropout(tensor).sum()) # 100 (без Dropout)


В режиме обучения оставшиеся значения увеличиваются, в режиме inference — нет.

Вывод:
Dropout не просто отключает нейроны — он ещё масштабирует оставшиеся активации, чтобы модель обучалась корректно.

🏃‍♀️ Proglib Academy

#буст

BY Proglib.academy | IT-курсы




Share with your friend now:
tgoop.com/proglib_academy/3202

View MORE
Open in Telegram


Telegram News

Date: |

6How to manage your Telegram channel? In the next window, choose the type of your channel. If you want your channel to be public, you need to develop a link for it. In the screenshot below, it’s ”/catmarketing.” If your selected link is unavailable, you’ll need to suggest another option. Administrators best-secure-messaging-apps-shutterstock-1892950018.jpg Telegram has announced a number of measures aiming to tackle the spread of disinformation through its platform in Brazil. These features are part of an agreement between the platform and the country's authorities ahead of the elections in October.
from us


Telegram Proglib.academy | IT-курсы
FROM American