NEURAL Telegram 10158
Forwarded from Machinelearning
⚡️ Александр Мордвинцев, исследователь из Google, создал цифровые системы на основе клеточных автоматов, где каждая клетка взаимодействует только со своими соседями.

Эти нейронные клеточные автоматы (Neural Cellular Automata) способны самособираться в заданные формы и даже восстанавливаться после повреждений.

В *Quanta Magazine* рассказали о том, как учёные научились обучать искусственные "клетки" собираться в заданные формы. Это похоже на игру «Жизнь» (*Game of Life*), но наоборот.

🧩 Что такое Game of Life?
Это простая компьютерная модель: есть сетка из клеток, у каждой клетки всего два состояния — «жива» или «мертва». Жизнь клетки зависит от соседей (например, если вокруг слишком много соседей, клетка умирает).
Обычно мы задаём правила и просто смотрим, что получится.
А теперь учёные сделали наоборот: сначала задаём цель (например, фигуру), а потом подбираем правила так, чтобы клетки сами в неё собрались.

⚙️ Что изменили учёные?
1. Непрерывные состояния - клетка не просто «вкл/выкл», а может быть наполовину активна. Это как лампочка с плавным регулятором яркости.
2. Скрытые переменные - у каждой клетки есть «внутренние параметры», которые влияют на её поведение. Представь, что у клетки есть «настроение» или «память», которое не видно исследователю напрямую.
3. Асинхронное обновление — клетки меняются в случайное время, а не все сразу. Это ближе к реальной жизни, где всё развивается не идеально синхронно.

💡 Зачем это нужно?
- Восстановление после повреждений: если часть фигуры «сломать», клетки могут достроить её заново.
- Децентрализация: нет главного управляющего - каждая клетка действует локально, но вместе они формируют систему.
- Устойчивость к шуму: клетки учатся справляться с хаосом и случайностями, а не просто повторяют выученный рисунок.

🟠Какие есть ограничения?
- Пока это работает для картинок и форм, но не для сложных живых организмов.
- Чтобы система умела «регенерировать», её нужно специально тренировать.
- Перенести эту идею в настоящие биологические клетки или роботов сложно — там много физических ограничений.

🟠 Где это можно применить?
- Медицина - модели самовосстановления тканей.
- Робототехника - рой роботов, которые без команды сверху сами собираются в нужную конструкцию.
- Материалы будущего — «умные» кирпичики или детали, которые сами подстраиваются под окружение.
- Новые вычислительные системы - компьютеры без центрального процессора, где решения рождаются распределённо.

Учёные показали, что нейронные клеточные автоматы можно рассматривать как модель эволюции: геном не задаёт форму напрямую, а запускает процесс её построения, что делает системы гибкими и адаптивными.

Главное отличие от природы в том, что эволюция не имеет цели, а автоматы обучают под задачу.

Эти модели предлагают новый тип вычислений: каждая клетка взаимодействует только с соседями, что делает архитектуру распределённой и потенциально энергоэффективной.

Уже есть впечатляющие результаты — от распознавания цифр и умножения матриц до решения задач вроде IQ-тестов и управления роями роботов, которые начинают вести себя как единый организм.

В итоге работы Мордвинцева соединяют биологию, компьютеры и робототехнику, возвращая к идее, что жизнь и вычисления — две стороны одного процесса.

🟢 Полная статья: https://www.quantamagazine.org/self-assembly-gets-automated-in-reverse-of-game-of-life-20250910/

@ai_machinelearning_big_data

#evolution #machinelearning #neuralnetworks #biology
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/neural/10158
Create:
Last Update:

⚡️ Александр Мордвинцев, исследователь из Google, создал цифровые системы на основе клеточных автоматов, где каждая клетка взаимодействует только со своими соседями.

Эти нейронные клеточные автоматы (Neural Cellular Automata) способны самособираться в заданные формы и даже восстанавливаться после повреждений.

В *Quanta Magazine* рассказали о том, как учёные научились обучать искусственные "клетки" собираться в заданные формы. Это похоже на игру «Жизнь» (*Game of Life*), но наоборот.

🧩 Что такое Game of Life?
Это простая компьютерная модель: есть сетка из клеток, у каждой клетки всего два состояния — «жива» или «мертва». Жизнь клетки зависит от соседей (например, если вокруг слишком много соседей, клетка умирает).
Обычно мы задаём правила и просто смотрим, что получится.
А теперь учёные сделали наоборот: сначала задаём цель (например, фигуру), а потом подбираем правила так, чтобы клетки сами в неё собрались.

⚙️ Что изменили учёные?
1. Непрерывные состояния - клетка не просто «вкл/выкл», а может быть наполовину активна. Это как лампочка с плавным регулятором яркости.
2. Скрытые переменные - у каждой клетки есть «внутренние параметры», которые влияют на её поведение. Представь, что у клетки есть «настроение» или «память», которое не видно исследователю напрямую.
3. Асинхронное обновление — клетки меняются в случайное время, а не все сразу. Это ближе к реальной жизни, где всё развивается не идеально синхронно.

💡 Зачем это нужно?
- Восстановление после повреждений: если часть фигуры «сломать», клетки могут достроить её заново.
- Децентрализация: нет главного управляющего - каждая клетка действует локально, но вместе они формируют систему.
- Устойчивость к шуму: клетки учатся справляться с хаосом и случайностями, а не просто повторяют выученный рисунок.

🟠Какие есть ограничения?
- Пока это работает для картинок и форм, но не для сложных живых организмов.
- Чтобы система умела «регенерировать», её нужно специально тренировать.
- Перенести эту идею в настоящие биологические клетки или роботов сложно — там много физических ограничений.

🟠 Где это можно применить?
- Медицина - модели самовосстановления тканей.
- Робототехника - рой роботов, которые без команды сверху сами собираются в нужную конструкцию.
- Материалы будущего — «умные» кирпичики или детали, которые сами подстраиваются под окружение.
- Новые вычислительные системы - компьютеры без центрального процессора, где решения рождаются распределённо.

Учёные показали, что нейронные клеточные автоматы можно рассматривать как модель эволюции: геном не задаёт форму напрямую, а запускает процесс её построения, что делает системы гибкими и адаптивными.

Главное отличие от природы в том, что эволюция не имеет цели, а автоматы обучают под задачу.

Эти модели предлагают новый тип вычислений: каждая клетка взаимодействует только с соседями, что делает архитектуру распределённой и потенциально энергоэффективной.

Уже есть впечатляющие результаты — от распознавания цифр и умножения матриц до решения задач вроде IQ-тестов и управления роями роботов, которые начинают вести себя как единый организм.

В итоге работы Мордвинцева соединяют биологию, компьютеры и робототехнику, возвращая к идее, что жизнь и вычисления — две стороны одного процесса.

🟢 Полная статья: https://www.quantamagazine.org/self-assembly-gets-automated-in-reverse-of-game-of-life-20250910/

@ai_machinelearning_big_data

#evolution #machinelearning #neuralnetworks #biology

BY Neural Networks | Нейронные сети




Share with your friend now:
tgoop.com/neural/10158

View MORE
Open in Telegram


Telegram News

Date: |

Telegram users themselves will be able to flag and report potentially false content. Developing social channels based on exchanging a single message isn’t exactly new, of course. Back in 2014, the “Yo” app was launched with the sole purpose of enabling users to send each other the greeting “Yo.” Hui said the messages, which included urging the disruption of airport operations, were attempts to incite followers to make use of poisonous, corrosive or flammable substances to vandalize police vehicles, and also called on others to make weapons to harm police. In 2018, Telegram’s audience reached 200 million people, with 500,000 new users joining the messenger every day. It was launched for iOS on 14 August 2013 and Android on 20 October 2013. Clear
from us


Telegram Neural Networks | Нейронные сети
FROM American