MACHINELEARNINGNET2 Telegram 520
مجموعه جلسات «گذر»

💠عنوان:
"Probabilistic Programming for Machine Learning"

🎙 ارائه‌دهنده:
امیرعباس اسدی

🔻توضیحات:
Bayesian Learning provides a natural framework for approaching Machine Learning problems. For a long time, due to the significant computational cost of Bayesian inference, this framework was limited to simple models and problems with a small amount of data. Probabilistic Programming is the fruit of many years of research in approximate Bayesian inference aiming to address these limitations. This presentation is a friendly introduction to Probabilistic Programming. We will explore how modern inference methods and recent advances in Differentiable Programming can help us unlock the full potential of Bayesian Machine Learning.

Presentation outline:
- Bayesian Learning and Probabilistic Programs
- Probabilistic Programming in Julia
- Approximate Bayesian Inference
-- Markov Chain Monte Carlo
-- Variational Inference
- Differentiable Programming
- Discussing some examples:
-- Bayesian Deep Learning
-- Bayesian Neural Differential Equations
-- Inverse Optimization

پیشنیاز های علمی:  آمار و احتمال مقدماتی، آشنایی با Deep Learning



🌐 فرم ثبت‌نام

مهلت ثبت‌نام : ۱۵ مهر
🗓 زمان: چهارشنبه ۱۸ مهر - ساعت ۱۶:۰۰
📍مکان: به صورت هیبرید - کلاس ۱۰۹ دانشکده ریاضی


🚀 @Gozar_SUT
🚀 @hamband_sut
Please open Telegram to view this post
VIEW IN TELEGRAM
👏5👍2🙏2👀1



tgoop.com/machinelearningnet2/520
Create:
Last Update:

مجموعه جلسات «گذر»

💠عنوان:
"Probabilistic Programming for Machine Learning"

🎙 ارائه‌دهنده:
امیرعباس اسدی

🔻توضیحات:
Bayesian Learning provides a natural framework for approaching Machine Learning problems. For a long time, due to the significant computational cost of Bayesian inference, this framework was limited to simple models and problems with a small amount of data. Probabilistic Programming is the fruit of many years of research in approximate Bayesian inference aiming to address these limitations. This presentation is a friendly introduction to Probabilistic Programming. We will explore how modern inference methods and recent advances in Differentiable Programming can help us unlock the full potential of Bayesian Machine Learning.

Presentation outline:
- Bayesian Learning and Probabilistic Programs
- Probabilistic Programming in Julia
- Approximate Bayesian Inference
-- Markov Chain Monte Carlo
-- Variational Inference
- Differentiable Programming
- Discussing some examples:
-- Bayesian Deep Learning
-- Bayesian Neural Differential Equations
-- Inverse Optimization

پیشنیاز های علمی:  آمار و احتمال مقدماتی، آشنایی با Deep Learning



🌐 فرم ثبت‌نام

مهلت ثبت‌نام : ۱۵ مهر
🗓 زمان: چهارشنبه ۱۸ مهر - ساعت ۱۶:۰۰
📍مکان: به صورت هیبرید - کلاس ۱۰۹ دانشکده ریاضی


🚀 @Gozar_SUT
🚀 @hamband_sut

BY @machinelearningnet




Share with your friend now:
tgoop.com/machinelearningnet2/520

View MORE
Open in Telegram


Telegram News

Date: |

But a Telegram statement also said: "Any requests related to political censorship or limiting human rights such as the rights to free speech or assembly are not and will not be considered." Administrators The group also hosted discussions on committing arson, Judge Hui said, including setting roadblocks on fire, hurling petrol bombs at police stations and teaching people to make such weapons. The conversation linked to arson went on for two to three months, Hui said. End-to-end encryption is an important feature in messaging, as it's the first step in protecting users from surveillance. Members can post their voice notes of themselves screaming. Interestingly, the group doesn’t allow to post anything else which might lead to an instant ban. As of now, there are more than 330 members in the group.
from us


Telegram @machinelearningnet
FROM American