MACHINELEARNING_RU Telegram 2888
Forwarded from Machinelearning
📌g-AMIE: мультиагентная система от Google Reserch.

Google представила g-AMIE (guardrailed-AMIE) — расширенную версию своей исследовательской системы AMIE, которая работает в паре с врачом по принципу асинхронного надзора.

Идея проста: ИИ собирает анамнез, а врач принимает решения. Для этого была разработана многоагентная система на базе Gemini 2.0 Flash и специальный веб-интерфейс "кабинет врача"

🟡Обновленная система состоит из 3 агентов.

Агент-диалог ведёт беседу с пациентом, собирая информацию. Его работа делится на 3 фазы: общий сбор анамнеза, целенаправленная проверка первоначального дифференциального диагноза и заключительная фаза с ответами на вопросы пациента.

Агент-ограничитель следит за тем, чтобы агент-диалог не давал никаких индивидуальных медицинских советов, диагнозов или планов лечения, при необходимости перефразируя его ответы.

Агент SOAP-записи генерирует подробную медицинскую карту в популярном формате SOAP, разделяя задачи предварительных итогов (жалобы пациента, объективные данные) и вывода (оценка и план лечения).

После сбора анамнеза сгенерированная SOAP-запись и черновик заключения отправляются на проверку врачу через «кабинет врача». Врач может редактировать документы и либо одобрить отправку сообщения, либо принять решение о необходимости очной консультации.

Чтобы оценить эффективность такого подхода, было проведено рандомизированное слепое исследование в формате виртуального объективного структурированного клинического экзамена (ОСКЭ) на 60 клинических сценариях.

В исследовании участвовали пациенты, g-AMIE и 2 контрольные группы: врачи общей практики и медсестры-практики/ассистенты врачей. Обеим человеческим группам было предписано работать в тех же ограничениях, что и g-AMIE, то есть только собирать анамнез без предоставления советов. Затем их SOAP-записи и проекты сообщений оценивались группой опытных врачей-наблюдателей.

🟡Результаты эксперимента.

Во-первых, g-AMIE успешно справился с задачей и ни разу не был уличён в предоставлении индивидуальных медицинских советов.

Во-вторых, его способность извлекать ключевую информацию из беседы с пациентом была оценена выше, чем у обеих контрольных групп. SOAP-записи, сгенерированные g-AMIE, были признаны более полными, точными и читаемыми.

Врачи-наблюдатели чаще предпочитали работать с записями от ИИ и с большей вероятностью одобряли составленные им сообщения для пациентов.

Более того, дифференциальные диагнозы и планы лечения, основанные на данных от g-AMIE, были оценены как более адекватные.

🟡Нюансы.

g-AMIE оказался более "многословным", что, с одной стороны, способствовало лучшему установлению контакта с пациентом (тестовые пациенты отметили его эмпатию), но с другой — приводило к более длительному времени проверки записей врачами.

Во-вторых, хотя в записях g-AMIE и встречались галлюцинации, их частота была сопоставима с ошибками памяти у людей.

Интересно, что медсестры и ассистенты врачей показали себя лучше, чем врачи общей практики, как в сборе анамнеза, так и в соблюдении ограничений.

Авторы объясняют это тем, что врачи не привыкли воздерживаться от советов во время консультации и их стандартный рабочий процесс был нарушен. Поэтому результаты не следует интерпретировать как прямое превосходство ИИ над клиницистами в реальном мире, так как люди не были обучены работать в этой новой парадигме.

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍42🔥2🥰1



tgoop.com/machinelearning_ru/2888
Create:
Last Update:

📌g-AMIE: мультиагентная система от Google Reserch.

Google представила g-AMIE (guardrailed-AMIE) — расширенную версию своей исследовательской системы AMIE, которая работает в паре с врачом по принципу асинхронного надзора.

Идея проста: ИИ собирает анамнез, а врач принимает решения. Для этого была разработана многоагентная система на базе Gemini 2.0 Flash и специальный веб-интерфейс "кабинет врача"

🟡Обновленная система состоит из 3 агентов.

Агент-диалог ведёт беседу с пациентом, собирая информацию. Его работа делится на 3 фазы: общий сбор анамнеза, целенаправленная проверка первоначального дифференциального диагноза и заключительная фаза с ответами на вопросы пациента.

Агент-ограничитель следит за тем, чтобы агент-диалог не давал никаких индивидуальных медицинских советов, диагнозов или планов лечения, при необходимости перефразируя его ответы.

Агент SOAP-записи генерирует подробную медицинскую карту в популярном формате SOAP, разделяя задачи предварительных итогов (жалобы пациента, объективные данные) и вывода (оценка и план лечения).

После сбора анамнеза сгенерированная SOAP-запись и черновик заключения отправляются на проверку врачу через «кабинет врача». Врач может редактировать документы и либо одобрить отправку сообщения, либо принять решение о необходимости очной консультации.

Чтобы оценить эффективность такого подхода, было проведено рандомизированное слепое исследование в формате виртуального объективного структурированного клинического экзамена (ОСКЭ) на 60 клинических сценариях.

В исследовании участвовали пациенты, g-AMIE и 2 контрольные группы: врачи общей практики и медсестры-практики/ассистенты врачей. Обеим человеческим группам было предписано работать в тех же ограничениях, что и g-AMIE, то есть только собирать анамнез без предоставления советов. Затем их SOAP-записи и проекты сообщений оценивались группой опытных врачей-наблюдателей.

🟡Результаты эксперимента.

Во-первых, g-AMIE успешно справился с задачей и ни разу не был уличён в предоставлении индивидуальных медицинских советов.

Во-вторых, его способность извлекать ключевую информацию из беседы с пациентом была оценена выше, чем у обеих контрольных групп. SOAP-записи, сгенерированные g-AMIE, были признаны более полными, точными и читаемыми.

Врачи-наблюдатели чаще предпочитали работать с записями от ИИ и с большей вероятностью одобряли составленные им сообщения для пациентов.

Более того, дифференциальные диагнозы и планы лечения, основанные на данных от g-AMIE, были оценены как более адекватные.

🟡Нюансы.

g-AMIE оказался более "многословным", что, с одной стороны, способствовало лучшему установлению контакта с пациентом (тестовые пациенты отметили его эмпатию), но с другой — приводило к более длительному времени проверки записей врачами.

Во-вторых, хотя в записях g-AMIE и встречались галлюцинации, их частота была сопоставима с ошибками памяти у людей.

Интересно, что медсестры и ассистенты врачей показали себя лучше, чем врачи общей практики, как в сборе анамнеза, так и в соблюдении ограничений.

Авторы объясняют это тем, что врачи не привыкли воздерживаться от советов во время консультации и их стандартный рабочий процесс был нарушен. Поэтому результаты не следует интерпретировать как прямое превосходство ИИ над клиницистами в реальном мире, так как люди не были обучены работать в этой новой парадигме.

@ai_machinelearning_big_data

#news #ai #ml

BY Машинное обучение RU








Share with your friend now:
tgoop.com/machinelearning_ru/2888

View MORE
Open in Telegram


Telegram News

Date: |

A new window will come up. Enter your channel name and bio. (See the character limits above.) Click “Create.” In handing down the sentence yesterday, deputy judge Peter Hui Shiu-keung of the district court said that even if Ng did not post the messages, he cannot shirk responsibility as the owner and administrator of such a big group for allowing these messages that incite illegal behaviors to exist. As of Thursday, the SUCK Channel had 34,146 subscribers, with only one message dated August 28, 2020. It was an announcement stating that police had removed all posts on the channel because its content “contravenes the laws of Hong Kong.” Matt Hussey, editorial director of NEAR Protocol (and former editor-in-chief of Decrypt) responded to the news of the Telegram group with “#meIRL.” SUCK Channel Telegram
from us


Telegram Машинное обучение RU
FROM American