MACHINELEARNING_RU Telegram 2276
Forwarded from Machinelearning
🌟 POINTS1.5: VLM от WeChat.

POINTS1.5 - усовершенствованная версия VLM POINTS1.0, построенная по принципу LLaVA (визуальный энкодер+LLM) на базе Qwen2.5-7B-Instruct.

В отличие от предыдущей версии, где использовался энкодер изображений CLIP, POINTS1.5 использует энкодер NaViT, который позволяет модели обрабатывать изображения различного разрешения без необходимости их разделения.

Для повышения качества модели были применены методы фильтрации данных для обучения. Данные, не требующие анализа изображения для ответа на вопрос и содержащие грамматические ошибки, были удалены.

Обучение POINTS1.5 выполнялось в два этапа: предварительное обучение и настройка на выполнение визуальных инструкций. На этапе предварительного обучения проектор и LLM обучались совместно.

На этапе настройки на выполнение визуальных инструкций использовались специализированные наборы данных, которые обучают модель понимать инструкции, связанные с изображениями.

POINTS1.5 была протестирована на бенчмарках MMBench, MMMU, MathVista, HallucinationBench, OCRBench, MMVet, ChartQA, MME, LLaVA-wild, SEEDBench, ScienceQA, MATH-Vision и MathVerse и показала высокие результаты, особенно в задачах, требующих математических навыков.

Модели семейства POINTS могут быть запущены в режиме model soup (совместный запуск нескольких моделей, настроенных с разными наборами инструкций для получения итоговой "усредненной" модели) и CATTY (стратегия разбиения изображения большого разрешения на небольшие фрагменты одинакового размера).

▶️Локальная установка и пример инференса с Transformers:


# Clone repo
git clone https://github.com/WePOINTS/WePOINTS.git

# Install required packages
cd WePOINTS
pip install -e .

# Inference example
from transformers import AutoModelForCausalLM, AutoTokenizer
from wepoints.utils.images import Qwen2ImageProcessorForPOINTSV15
import torch
from PIL import Image
import requests
from io import BytesIO


model_path = 'WePOINTS/POINTS-1-5-Qwen-2-5-7B-Chat'
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map='cuda')
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
image_processor = Qwen2ImageProcessorForPOINTSV15.from_pretrained(model_path)

image_url = '%link to image%'
response = requests.get(image_url)
image_data = BytesIO(response.content)
pil_image = Image.open(image_data)
pil_image = pil_image.save('image.jpg')
prompt = 'please describe the image in detail'

content = [
dict(type='image', image='image.jpg'),
dict(type='text', text=prompt)
]
messages = [
{
'role': 'user',
'content': content
}
]
generation_config = {
'max_new_tokens': 1024,
'temperature': 0.0,
'top_p': 0.0,
'num_beams': 1,
}
response = model.chat(
messages,
tokenizer,
image_processor,
generation_config
)
print(response)


📌Лицензирование: Apache 2.0 License.


Модель
Arxiv
GitHub
Руководство по Prompt Engineering


@ai_machinelearning_big_data

#AI #ML #VLM #WePOINTS
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7



tgoop.com/machinelearning_ru/2276
Create:
Last Update:

🌟 POINTS1.5: VLM от WeChat.

POINTS1.5 - усовершенствованная версия VLM POINTS1.0, построенная по принципу LLaVA (визуальный энкодер+LLM) на базе Qwen2.5-7B-Instruct.

В отличие от предыдущей версии, где использовался энкодер изображений CLIP, POINTS1.5 использует энкодер NaViT, который позволяет модели обрабатывать изображения различного разрешения без необходимости их разделения.

Для повышения качества модели были применены методы фильтрации данных для обучения. Данные, не требующие анализа изображения для ответа на вопрос и содержащие грамматические ошибки, были удалены.

Обучение POINTS1.5 выполнялось в два этапа: предварительное обучение и настройка на выполнение визуальных инструкций. На этапе предварительного обучения проектор и LLM обучались совместно.

На этапе настройки на выполнение визуальных инструкций использовались специализированные наборы данных, которые обучают модель понимать инструкции, связанные с изображениями.

POINTS1.5 была протестирована на бенчмарках MMBench, MMMU, MathVista, HallucinationBench, OCRBench, MMVet, ChartQA, MME, LLaVA-wild, SEEDBench, ScienceQA, MATH-Vision и MathVerse и показала высокие результаты, особенно в задачах, требующих математических навыков.

Модели семейства POINTS могут быть запущены в режиме model soup (совместный запуск нескольких моделей, настроенных с разными наборами инструкций для получения итоговой "усредненной" модели) и CATTY (стратегия разбиения изображения большого разрешения на небольшие фрагменты одинакового размера).

▶️Локальная установка и пример инференса с Transformers:


# Clone repo
git clone https://github.com/WePOINTS/WePOINTS.git

# Install required packages
cd WePOINTS
pip install -e .

# Inference example
from transformers import AutoModelForCausalLM, AutoTokenizer
from wepoints.utils.images import Qwen2ImageProcessorForPOINTSV15
import torch
from PIL import Image
import requests
from io import BytesIO


model_path = 'WePOINTS/POINTS-1-5-Qwen-2-5-7B-Chat'
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map='cuda')
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
image_processor = Qwen2ImageProcessorForPOINTSV15.from_pretrained(model_path)

image_url = '%link to image%'
response = requests.get(image_url)
image_data = BytesIO(response.content)
pil_image = Image.open(image_data)
pil_image = pil_image.save('image.jpg')
prompt = 'please describe the image in detail'

content = [
dict(type='image', image='image.jpg'),
dict(type='text', text=prompt)
]
messages = [
{
'role': 'user',
'content': content
}
]
generation_config = {
'max_new_tokens': 1024,
'temperature': 0.0,
'top_p': 0.0,
'num_beams': 1,
}
response = model.chat(
messages,
tokenizer,
image_processor,
generation_config
)
print(response)


📌Лицензирование: Apache 2.0 License.


Модель
Arxiv
GitHub
Руководство по Prompt Engineering


@ai_machinelearning_big_data

#AI #ML #VLM #WePOINTS

BY Машинное обучение RU











Share with your friend now:
tgoop.com/machinelearning_ru/2276

View MORE
Open in Telegram


Telegram News

Date: |

How to create a business channel on Telegram? (Tutorial) How to Create a Private or Public Channel on Telegram? The public channel had more than 109,000 subscribers, Judge Hui said. Ng had the power to remove or amend the messages in the channel, but he “allowed them to exist.” According to media reports, the privacy watchdog was considering “blacklisting” some online platforms that have repeatedly posted doxxing information, with sources saying most messages were shared on Telegram. Telegram iOS app: In the “Chats” tab, click the new message icon in the right upper corner. Select “New Channel.”
from us


Telegram Машинное обучение RU
FROM American