Warning: file_put_contents(aCache/aDaily/post/ai_machinelearning_big_data/-6374-6375-6376-6377-6378-6379-6380-6381-6374-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Machinelearning@ai_machinelearning_big_data P.6374
AI_MACHINELEARNING_BIG_DATA Telegram 6374
🌟 POINTS1.5: VLM от WeChat.

POINTS1.5 - усовершенствованная версия VLM POINTS1.0, построенная по принципу LLaVA (визуальный энкодер+LLM) на базе Qwen2.5-7B-Instruct.

В отличие от предыдущей версии, где использовался энкодер изображений CLIP, POINTS1.5 использует энкодер NaViT, который позволяет модели обрабатывать изображения различного разрешения без необходимости их разделения.

Для повышения качества модели были применены методы фильтрации данных для обучения. Данные, не требующие анализа изображения для ответа на вопрос и содержащие грамматические ошибки, были удалены.

Обучение POINTS1.5 выполнялось в два этапа: предварительное обучение и настройка на выполнение визуальных инструкций. На этапе предварительного обучения проектор и LLM обучались совместно.

На этапе настройки на выполнение визуальных инструкций использовались специализированные наборы данных, которые обучают модель понимать инструкции, связанные с изображениями.

POINTS1.5 была протестирована на бенчмарках MMBench, MMMU, MathVista, HallucinationBench, OCRBench, MMVet, ChartQA, MME, LLaVA-wild, SEEDBench, ScienceQA, MATH-Vision и MathVerse и показала высокие результаты, особенно в задачах, требующих математических навыков.

Модели семейства POINTS могут быть запущены в режиме model soup (совместный запуск нескольких моделей, настроенных с разными наборами инструкций для получения итоговой "усредненной" модели) и CATTY (стратегия разбиения изображения большого разрешения на небольшие фрагменты одинакового размера).

▶️Локальная установка и пример инференса с Transformers:


# Clone repo
git clone https://github.com/WePOINTS/WePOINTS.git

# Install required packages
cd WePOINTS
pip install -e .

# Inference example
from transformers import AutoModelForCausalLM, AutoTokenizer
from wepoints.utils.images import Qwen2ImageProcessorForPOINTSV15
import torch
from PIL import Image
import requests
from io import BytesIO


model_path = 'WePOINTS/POINTS-1-5-Qwen-2-5-7B-Chat'
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map='cuda')
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
image_processor = Qwen2ImageProcessorForPOINTSV15.from_pretrained(model_path)

image_url = '%link to image%'
response = requests.get(image_url)
image_data = BytesIO(response.content)
pil_image = Image.open(image_data)
pil_image = pil_image.save('image.jpg')
prompt = 'please describe the image in detail'

content = [
dict(type='image', image='image.jpg'),
dict(type='text', text=prompt)
]
messages = [
{
'role': 'user',
'content': content
}
]
generation_config = {
'max_new_tokens': 1024,
'temperature': 0.0,
'top_p': 0.0,
'num_beams': 1,
}
response = model.chat(
messages,
tokenizer,
image_processor,
generation_config
)
print(response)


📌Лицензирование: Apache 2.0 License.


Модель
Arxiv
GitHub
Руководство по Prompt Engineering


@ai_machinelearning_big_data

#AI #ML #VLM #WePOINTS
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2810🔥7



tgoop.com/ai_machinelearning_big_data/6374
Create:
Last Update:

🌟 POINTS1.5: VLM от WeChat.

POINTS1.5 - усовершенствованная версия VLM POINTS1.0, построенная по принципу LLaVA (визуальный энкодер+LLM) на базе Qwen2.5-7B-Instruct.

В отличие от предыдущей версии, где использовался энкодер изображений CLIP, POINTS1.5 использует энкодер NaViT, который позволяет модели обрабатывать изображения различного разрешения без необходимости их разделения.

Для повышения качества модели были применены методы фильтрации данных для обучения. Данные, не требующие анализа изображения для ответа на вопрос и содержащие грамматические ошибки, были удалены.

Обучение POINTS1.5 выполнялось в два этапа: предварительное обучение и настройка на выполнение визуальных инструкций. На этапе предварительного обучения проектор и LLM обучались совместно.

На этапе настройки на выполнение визуальных инструкций использовались специализированные наборы данных, которые обучают модель понимать инструкции, связанные с изображениями.

POINTS1.5 была протестирована на бенчмарках MMBench, MMMU, MathVista, HallucinationBench, OCRBench, MMVet, ChartQA, MME, LLaVA-wild, SEEDBench, ScienceQA, MATH-Vision и MathVerse и показала высокие результаты, особенно в задачах, требующих математических навыков.

Модели семейства POINTS могут быть запущены в режиме model soup (совместный запуск нескольких моделей, настроенных с разными наборами инструкций для получения итоговой "усредненной" модели) и CATTY (стратегия разбиения изображения большого разрешения на небольшие фрагменты одинакового размера).

▶️Локальная установка и пример инференса с Transformers:


# Clone repo
git clone https://github.com/WePOINTS/WePOINTS.git

# Install required packages
cd WePOINTS
pip install -e .

# Inference example
from transformers import AutoModelForCausalLM, AutoTokenizer
from wepoints.utils.images import Qwen2ImageProcessorForPOINTSV15
import torch
from PIL import Image
import requests
from io import BytesIO


model_path = 'WePOINTS/POINTS-1-5-Qwen-2-5-7B-Chat'
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map='cuda')
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
image_processor = Qwen2ImageProcessorForPOINTSV15.from_pretrained(model_path)

image_url = '%link to image%'
response = requests.get(image_url)
image_data = BytesIO(response.content)
pil_image = Image.open(image_data)
pil_image = pil_image.save('image.jpg')
prompt = 'please describe the image in detail'

content = [
dict(type='image', image='image.jpg'),
dict(type='text', text=prompt)
]
messages = [
{
'role': 'user',
'content': content
}
]
generation_config = {
'max_new_tokens': 1024,
'temperature': 0.0,
'top_p': 0.0,
'num_beams': 1,
}
response = model.chat(
messages,
tokenizer,
image_processor,
generation_config
)
print(response)


📌Лицензирование: Apache 2.0 License.


Модель
Arxiv
GitHub
Руководство по Prompt Engineering


@ai_machinelearning_big_data

#AI #ML #VLM #WePOINTS

BY Machinelearning











Share with your friend now:
tgoop.com/ai_machinelearning_big_data/6374

View MORE
Open in Telegram


Telegram News

Date: |

A Telegram channel is used for various purposes, from sharing helpful content to implementing a business strategy. In addition, you can use your channel to build and improve your company image, boost your sales, make profits, enhance customer loyalty, and more. Unlimited number of subscribers per channel Channel login must contain 5-32 characters The administrator of a telegram group, "Suck Channel," was sentenced to six years and six months in prison for seven counts of incitement yesterday. So far, more than a dozen different members have contributed to the group, posting voice notes of themselves screaming, yelling, groaning, and wailing in various pitches and rhythms.
from us


Telegram Machinelearning
FROM American