MACHINELEARNING_RU Telegram 2172
Forwarded from Machinelearning
🌟 OpenCoder - модели для кодинга, cookbook обучения и датасеты.

OpenCoder - это открытое и воспроизводимое семейство LLM для программирования, включающее 1,5B и 8B базовые и instruct версии, поддерживающее английский и китайский языки.

Семейство моделей OpenCoder обучалось с нуля на 2,5 трлн. лексем, состоящих на 90 % из сырого кода и на 10 % из веб-данных, связанных с кодом, и прошло отладку на более чем 4,5 млн. высококачественных примеров SFT, в итоге достигнув производительности топовых LLM с похожей специализацией.

В открытый доступ опубликованы не только веса моделей и код для инференса, но и датасеты, полный цикл обработки данных, результаты экспериментальной абляции и подробные протоколы обучения.

OpenCoder тщательно протестирован с помощью исследований абляции на различных стратегиях очистки данных и процессах обучения, включая эксперименты по дедупликации на уровне файлов и репозиториев, что обеспечило семейству тщательную проверку производительности моделей.

OpenCoder достигает высокой производительности в различных бенчмарках, что ставит их в ряд SOTA-моделей с открытым исходным кодом для задач программирования.

▶️ Семейство моделей OpenCoder :

🟢OpenCoder-1.5B-Base, 4 тыс. токенов контекста;

🟢OpenCoder-8B-Base, 8 тыс. токенов контекста;

🟠OpenCoder-1.5B-Instruct, 4 тыс. токенов контекста;

🟠OpenCoder-8B-Instruct, 8 тыс. токенов контекста;

▶️ Датасеты:

🟢OpenCoder-SFT-Stage1, 4.21 млн. строк;

🟠OpenCoder-SFT-Stage2, 375 тыс.строк.


▶️ Пример инференса на HF Transformers:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "infly/OpenCoder-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

messages=[
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")

outputs = model.generate(inputs, max_new_tokens=512, do_sample=False)

result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)



🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🟡Набор датасетов
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #OpenCoder #Datasets
Please open Telegram to view this post
VIEW IN TELEGRAM
👍42



tgoop.com/machinelearning_ru/2172
Create:
Last Update:

🌟 OpenCoder - модели для кодинга, cookbook обучения и датасеты.

OpenCoder - это открытое и воспроизводимое семейство LLM для программирования, включающее 1,5B и 8B базовые и instruct версии, поддерживающее английский и китайский языки.

Семейство моделей OpenCoder обучалось с нуля на 2,5 трлн. лексем, состоящих на 90 % из сырого кода и на 10 % из веб-данных, связанных с кодом, и прошло отладку на более чем 4,5 млн. высококачественных примеров SFT, в итоге достигнув производительности топовых LLM с похожей специализацией.

В открытый доступ опубликованы не только веса моделей и код для инференса, но и датасеты, полный цикл обработки данных, результаты экспериментальной абляции и подробные протоколы обучения.

OpenCoder тщательно протестирован с помощью исследований абляции на различных стратегиях очистки данных и процессах обучения, включая эксперименты по дедупликации на уровне файлов и репозиториев, что обеспечило семейству тщательную проверку производительности моделей.

OpenCoder достигает высокой производительности в различных бенчмарках, что ставит их в ряд SOTA-моделей с открытым исходным кодом для задач программирования.

▶️ Семейство моделей OpenCoder :

🟢OpenCoder-1.5B-Base, 4 тыс. токенов контекста;

🟢OpenCoder-8B-Base, 8 тыс. токенов контекста;

🟠OpenCoder-1.5B-Instruct, 4 тыс. токенов контекста;

🟠OpenCoder-8B-Instruct, 8 тыс. токенов контекста;

▶️ Датасеты:

🟢OpenCoder-SFT-Stage1, 4.21 млн. строк;

🟠OpenCoder-SFT-Stage2, 375 тыс.строк.


▶️ Пример инференса на HF Transformers:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "infly/OpenCoder-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

messages=[
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")

outputs = model.generate(inputs, max_new_tokens=512, do_sample=False)

result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)



🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🟡Набор датасетов
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #OpenCoder #Datasets

BY Машинное обучение RU







Share with your friend now:
tgoop.com/machinelearning_ru/2172

View MORE
Open in Telegram


Telegram News

Date: |

Content is editable within two days of publishing The best encrypted messaging apps As the broader market downturn continues, yelling online has become the crypto trader’s latest coping mechanism after the rise of Goblintown Ethereum NFTs at the end of May and beginning of June, where holders made incoherent groaning sounds and role-played as urine-loving goblin creatures in late-night Twitter Spaces. How to create a business channel on Telegram? (Tutorial) Unlimited number of subscribers per channel
from us


Telegram Машинное обучение RU
FROM American