Notice: file_put_contents(): Write of 21256 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50
плодотворные дебютные идеи@low_theory_raw P.760
LOW_THEORY_RAW Telegram 760
Process tracing: выводы о причинно-следственных связях на основе качественных данных

Доказательство причинно-следственных связей в социальных науках у меня всегда ассоциировалось с количественными исследованиями. В опросном эксперименте половине респондентов показали речь политика и им этот политик понравился. Другой половине речь не показали - им политик не понравился. Вывод: речь позитивно влияет на оценку политика. Мы доказали это, изолировав переменную и проверив результат при ее отсутствии.

Однако недавно я познакомился с совершенно гениальным методом process tracing. Он позволяет делать выводы о причинно-следственных связей на основе качественных данных. То есть когда анализируется мало кейсов или всего один.

Суть подхода: последовательно описываем все события связанные с изучаемым явлением и выдвигаем гипотезы о их причинах. Потом собираем данные, чтобы проверить эти гипотезы и по результатам выстраиваем модель причино-следственных связей. Фишка process tracing во фреймворке, который он предлагает для систематизации собранных доказательств:

Straw-in-the-wind test (солома на ветру) - факты, слегка усиливающие или ослабляющие гипотезу, но недостаточные для доказательства или опровержения.

Hoop test (тест обруча) - при прохождении теста гипотеза не подтверждается, но при непрохождении - опровергается.

Smoking-gun test (дымящееся ружье) - факты, полностью доказывающие гипотезу, но при непрохождении не опровергающие ее.

Doubly decisive test (дважды решающий) - доказательства, подтверждающие гипотезу и опровергающие все альтернативные. Чаще всего это комбинация разных тестов, например, имея три конкурирующие гипотезы мы две из них опровергаем с помощью hoop test, а третью подтверждаем через straw-in-the-wind тест.

Для иллюстрации приведу не социологический, но политически важный пример. Допустим, у нас гипотеза: Лукашенко не направил белорусские войска против Украины, чтобы избежать внутриполитических рисков для своей власти.

Количественный подход здесь невозможен: мы не соберем данные 30 аналогичных ситуаций, отличающихся только одним аспектом, например, отношением населения к войне. Поэтому можно анализировать только наш кейс:

1) Факт: большинство белорусов, даже поддерживающих власть, против вступления в войну. Значит наша гипотеза проходит hoop test: нежелание белорусов воевать не доказывает мотивы Лукашенко, но является необходимым условием, если предположить, что он не хотел вызвать народное недовольство.

2) Факт: В прошлом Лукашенко неоднократно действовал ради защиты своей власти. Это не подтверждает гипотезу полностью, но придает ей вес - она проходит straw-in-the-wind тест.

На самом деле в этом примере недостаточно фактов, чтобы понять прошла ли гипотеза doubly decisive test. Это было бы возможно, например, при наличии протокола совета безопасности со словами Лукашенко: "Россия требует нашего вступления в войну, но мы откажемся потому что идеологические работники докладывают, что 80% солдат не будут выполнять такой приказ". Однако пример показывает как классифицируются факты в рамках фреймворка и что в целом возможно делать выводы о причинно-следственных связях без количественных данных.

Я позже приведу пример из прикладной социологии, ведь аналогичным образом можно анализировать, например, данные глубинных интервью, извлекая из них факты и систематически соотнося с наборами альтернативных гипотез.
5👍1



tgoop.com/low_theory_raw/760
Create:
Last Update:

Process tracing: выводы о причинно-следственных связях на основе качественных данных

Доказательство причинно-следственных связей в социальных науках у меня всегда ассоциировалось с количественными исследованиями. В опросном эксперименте половине респондентов показали речь политика и им этот политик понравился. Другой половине речь не показали - им политик не понравился. Вывод: речь позитивно влияет на оценку политика. Мы доказали это, изолировав переменную и проверив результат при ее отсутствии.

Однако недавно я познакомился с совершенно гениальным методом process tracing. Он позволяет делать выводы о причинно-следственных связей на основе качественных данных. То есть когда анализируется мало кейсов или всего один.

Суть подхода: последовательно описываем все события связанные с изучаемым явлением и выдвигаем гипотезы о их причинах. Потом собираем данные, чтобы проверить эти гипотезы и по результатам выстраиваем модель причино-следственных связей. Фишка process tracing во фреймворке, который он предлагает для систематизации собранных доказательств:

Straw-in-the-wind test (солома на ветру) - факты, слегка усиливающие или ослабляющие гипотезу, но недостаточные для доказательства или опровержения.

Hoop test (тест обруча) - при прохождении теста гипотеза не подтверждается, но при непрохождении - опровергается.

Smoking-gun test (дымящееся ружье) - факты, полностью доказывающие гипотезу, но при непрохождении не опровергающие ее.

Doubly decisive test (дважды решающий) - доказательства, подтверждающие гипотезу и опровергающие все альтернативные. Чаще всего это комбинация разных тестов, например, имея три конкурирующие гипотезы мы две из них опровергаем с помощью hoop test, а третью подтверждаем через straw-in-the-wind тест.

Для иллюстрации приведу не социологический, но политически важный пример. Допустим, у нас гипотеза: Лукашенко не направил белорусские войска против Украины, чтобы избежать внутриполитических рисков для своей власти.

Количественный подход здесь невозможен: мы не соберем данные 30 аналогичных ситуаций, отличающихся только одним аспектом, например, отношением населения к войне. Поэтому можно анализировать только наш кейс:

1) Факт: большинство белорусов, даже поддерживающих власть, против вступления в войну. Значит наша гипотеза проходит hoop test: нежелание белорусов воевать не доказывает мотивы Лукашенко, но является необходимым условием, если предположить, что он не хотел вызвать народное недовольство.

2) Факт: В прошлом Лукашенко неоднократно действовал ради защиты своей власти. Это не подтверждает гипотезу полностью, но придает ей вес - она проходит straw-in-the-wind тест.

На самом деле в этом примере недостаточно фактов, чтобы понять прошла ли гипотеза doubly decisive test. Это было бы возможно, например, при наличии протокола совета безопасности со словами Лукашенко: "Россия требует нашего вступления в войну, но мы откажемся потому что идеологические работники докладывают, что 80% солдат не будут выполнять такой приказ". Однако пример показывает как классифицируются факты в рамках фреймворка и что в целом возможно делать выводы о причинно-следственных связях без количественных данных.

Я позже приведу пример из прикладной социологии, ведь аналогичным образом можно анализировать, например, данные глубинных интервью, извлекая из них факты и систематически соотнося с наборами альтернативных гипотез.

BY плодотворные дебютные идеи


Share with your friend now:
tgoop.com/low_theory_raw/760

View MORE
Open in Telegram


Telegram News

Date: |

Members can post their voice notes of themselves screaming. Interestingly, the group doesn’t allow to post anything else which might lead to an instant ban. As of now, there are more than 330 members in the group. 5Telegram Channel avatar size/dimensions The channel also called on people to turn out for illegal assemblies and listed the things that participants should bring along with them, showing prior planning was in the works for riots. The messages also incited people to hurl toxic gas bombs at police and MTR stations, he added. While some crypto traders move toward screaming as a coping mechanism, many mental health experts have argued that “scream therapy” is pseudoscience. Scientific research or no, it obviously feels good. For crypto enthusiasts, there was the “gm” app, a self-described “meme app” which only allowed users to greet each other with “gm,” or “good morning,” a common acronym thrown around on Crypto Twitter and Discord. But the gm app was shut down back in September after a hacker reportedly gained access to user data.
from us


Telegram плодотворные дебютные идеи
FROM American