tgoop.com/inside_ai_tech/9
Last Update:
Что такое RAG и почему он устарел?
Представьте, что у вас есть умный помощник (AI), который знает очень многое, но не всё. Что, если этому помощнику дать возможность что-то подсмотреть в справочнике или интернете, прежде чем ответить?
Именно эту идею реализует RAG (Retrieval-Augmented Generation) — «генерация с дополнением извлечённой информации». Проще говоря, благодаря RAG языковая модель не полагается только на свою внутреннюю «память», а подтягивает свежие данные из внешних источников, чтобы ответы были точнее и актуальнее. Такой подход помогает модели опираться на реальные факты и снижает риск, что она уверенно выдаст ложное утверждение.
Ограничения классического RAG
RAG-запросы стали и уже пару лет остаются популярным решением. Многие корпоративные чат-боты научились сначала выполнять дополнительный поиск по своей базе знаний перед тем, как дать ответ. Но у такого «классического» RAG-подхода есть и ряд ограничений:
- Он работает по жёсткой схеме «один поиск — один ответ» без возможности уточнить или повторить попытку. Если первый же поиск не нашёл нужных сведений, ответ получится слабым или вообще пустым. Нет возможности переформулировать вопрос и попробовать ещё раз — процесс не умеет разветвляться.
- Система не умеет рассуждать или планировать шаги: она берёт запрос как есть и ищет по нему, даже если он сформулирован неточно или расплывчато. RAG-пайплайн не адаптируется под сложные или многоэтапные вопросы. В результате сложные, многосоставные задачи (где, скажем, надо и поискать в нескольких местах, и сделать вычисления) ставят такую систему в тупик.
- RAG как самостоятельное решение заточен только под поиск текстовой информации. А если для ответа нужен ещё и расчёт, или нужно сходить на веб-сайт, или вызвать какой-то сервис? Старый RAG этого не умеет – он не подключит калькулятор и не напишет код, ведь изначально спроектирован только как связка «поиск текста → ответ».
Иными словами, традиционный RAG-подход хорош для ответов на простой фактологический вопрос из базы данных, но ему не хватает гибкости. Он не «подумает» сам, какой инструмент лучше использовать для решения нестандартной задачи, потому что умеет только искать по тексту. В эпоху, когда промпты пользователей становятся всё сложнее и разноплановее, такой узконаправленный подход начинает устаревать.
BY Внутри AI | Кейсы ИИ Агентов в бизнесе
Share with your friend now:
tgoop.com/inside_ai_tech/9