INSIDE_AI_TECH Telegram 10
RAG умер. Да здравствует RAG!

Новая волна ИИ-систем идет по своему пути. Вместо того, чтобы жестко пришивать RAG ко всем запросам, современные подходы дают модели набор инструментов и возможность самостоятельно выбирать, что и когда использовать. Модель превращается в агента, который может планировать действия: если понадобилась актуальная информация — агент решает выполнить поиск через RAG, если нужно посчитать — берёт в руки калькулятор, и так далее.

В таких системах RAG интегрирован внутрь более общей архитектуры. Например, OpenAI в своем новом Agents API позволяет подключить сразу несколько разных инструментов. Один и тот же AI-ассистент может в ходе диалога по необходимости:

- искать информацию — в интернете или по внутренней базе знаний (тот самый RAG, но вызывается только при необходимости);

- считать на калькуляторе — если вопрос про цифры или требует расчётов;

- просматривать веб-страницы — например, открыть ссылку и прочитать содержимое;

- запускать код — чтобы, к примеру, трансформировать данные или выполнить сложные действия;

- и многое другое (запросить данные из базы через API, использовать календарь и т.п.).

Все это происходит незаметно для пользователя. Агент сам решает, какой инструмент ему применить в данный момент, и для выполнения одного запроса он может их комбинировать.

Если вы спросите у такого помощника что-то про статистику компании, он сначала дернет RAG, найдёт цифры в вашей корпоративной базе знаний, а потом может тут же вычислить проценты на калькуляторе и выдать связный ответ. Если же вы спросите прогноз погоды, он обратится к веб-API погоды, а RAG не потребуется вовсе. Важно, что RAG-инструмент используется только тогда, когда нужен, в контексте общего интеллектуального планирования.

От систем, где приходилось вручную склеивать поиск, модель и другие сервисы, мы пришли к универсальным агентам, которые сами определяют все необходимые действия. Такой подход упрощает разработку и повышает интеллект системы, ведь агент умеет адаптироваться под задачу. Для бизнеса же это означает появление более умных чат-ботов и ассистентов, которые могут и на вопрос по документации ответить, и расчёт сделать, и по необходимости свежие данные подтянуть.



tgoop.com/inside_ai_tech/10
Create:
Last Update:

RAG умер. Да здравствует RAG!

Новая волна ИИ-систем идет по своему пути. Вместо того, чтобы жестко пришивать RAG ко всем запросам, современные подходы дают модели набор инструментов и возможность самостоятельно выбирать, что и когда использовать. Модель превращается в агента, который может планировать действия: если понадобилась актуальная информация — агент решает выполнить поиск через RAG, если нужно посчитать — берёт в руки калькулятор, и так далее.

В таких системах RAG интегрирован внутрь более общей архитектуры. Например, OpenAI в своем новом Agents API позволяет подключить сразу несколько разных инструментов. Один и тот же AI-ассистент может в ходе диалога по необходимости:

- искать информацию — в интернете или по внутренней базе знаний (тот самый RAG, но вызывается только при необходимости);

- считать на калькуляторе — если вопрос про цифры или требует расчётов;

- просматривать веб-страницы — например, открыть ссылку и прочитать содержимое;

- запускать код — чтобы, к примеру, трансформировать данные или выполнить сложные действия;

- и многое другое (запросить данные из базы через API, использовать календарь и т.п.).

Все это происходит незаметно для пользователя. Агент сам решает, какой инструмент ему применить в данный момент, и для выполнения одного запроса он может их комбинировать.

Если вы спросите у такого помощника что-то про статистику компании, он сначала дернет RAG, найдёт цифры в вашей корпоративной базе знаний, а потом может тут же вычислить проценты на калькуляторе и выдать связный ответ. Если же вы спросите прогноз погоды, он обратится к веб-API погоды, а RAG не потребуется вовсе. Важно, что RAG-инструмент используется только тогда, когда нужен, в контексте общего интеллектуального планирования.

От систем, где приходилось вручную склеивать поиск, модель и другие сервисы, мы пришли к универсальным агентам, которые сами определяют все необходимые действия. Такой подход упрощает разработку и повышает интеллект системы, ведь агент умеет адаптироваться под задачу. Для бизнеса же это означает появление более умных чат-ботов и ассистентов, которые могут и на вопрос по документации ответить, и расчёт сделать, и по необходимости свежие данные подтянуть.

BY Внутри AI | Кейсы ИИ Агентов в бизнесе


Share with your friend now:
tgoop.com/inside_ai_tech/10

View MORE
Open in Telegram


Telegram News

Date: |

Add the logo from your device. Adjust the visible area of your image. Congratulations! Now your Telegram channel has a face Click “Save”.! Today, we will address Telegram channels and how to use them for maximum benefit. The main design elements of your Telegram channel include a name, bio (brief description), and avatar. Your bio should be: With the administration mulling over limiting access to doxxing groups, a prominent Telegram doxxing group apparently went on a "revenge spree." For crypto enthusiasts, there was the “gm” app, a self-described “meme app” which only allowed users to greet each other with “gm,” or “good morning,” a common acronym thrown around on Crypto Twitter and Discord. But the gm app was shut down back in September after a hacker reportedly gained access to user data.
from us


Telegram Внутри AI | Кейсы ИИ Агентов в бизнесе
FROM American