tgoop.com/ds_problems_lib/879
Last Update:
✍️ Разбор задач прошедшей недели
1️⃣ KNN — это параметрический метод машинного обучения?
Метод k -ближайших соседей (KNN) считается непараметрическим, потому что он не делает предположений о распределении данных и не имеет фиксированного набора параметров, которые обучаются заранее.
В параметрических методах (например, линейной регрессии или логистической регрессии) модель на этапе обучения оценивает параметры, которые затем используются для получения предсказаний. В KNN модель не «учится» в традиционном смысле: нет фиксированной функции, описывающей взаимосвязь между признаками и целевой переменной.
2️⃣ Какая оценка дисперсии считается смещённой?
Оценка дисперсии считается смещённой, если её математическое ожидание не совпадает с истинным значением дисперсии генеральной совокупности. Когда мы делим на n (размер выборки), а не на n-1, то систематически занижаем дисперсию, так как не учитываем факт того, что среднее вычислено по той же выборке и поэтому менее точно приближает истинное среднее генеральной совокупности.
В случае деления на n-1 мы компенсируем «потерю одной степени свободы» из-за использования выборочного среднего вместо истинного.
#разбор_задач
BY Библиотека задач по Data Science | тесты, код, задания
Share with your friend now:
tgoop.com/ds_problems_lib/879