DATA_MATH Telegram 785
🦆 Как использовать DuckDB с Python: практическое руководство по аналитике

DuckDB — это современная in-process аналитическая СУБД, разработанная как “SQLite для аналитики”. Она идеально подходит для обработки больших объёмов данных на локальной машине без необходимости поднимать сервер или использовать тяжёлые хранилища.

📦 Что делает DuckDB особенной?
- Работает как библиотека внутри Python (через `duckdb`)
- Поддерживает SQL-запросы напрямую к pandas DataFrame, CSV, Parquet, Arrow и другим источникам
- Оптимизирована под аналитические запросы: агрегации, группировки, фильтрации
- Мгновенно работает с большими файлами без предварительной загрузки

🧪 Пример рабочего сценария:

1️⃣ Чтение и анализ Parquet-файла:

import duckdb

duckdb.sql("SELECT COUNT(*), AVG(price) FROM 'data.parquet'")


2️⃣ Интеграция с pandas:

import pandas as pd

df = pd.read_csv("data.csv")
result = duckdb.sql("SELECT category, AVG(value) FROM df GROUP BY category").df()


3️⃣ Объединение нескольких источников:

duckdb.sql("""
SELECT a.user_id, b.event_time
FROM 'users.parquet' a
JOIN read_csv('events.csv') b
ON a.user_id = b.user_id
""")


🧠 Почему это важно:
- 📊 Вы можете использовать SQL и pandas одновременно
- 🚀 DuckDB быстрее pandas в большинстве аналитических задач, особенно на больших данных
- 🧩 Поддержка стандартов данных (Parquet, Arrow) даёт нативную интеграцию с экосистемой Data Science
- 🔧 Не требует настройки: просто установите через pip install duckdb

🎯 Применения:
- Локальный анализ данных (до десятков ГБ) — без Spark
- Объединение таблиц из разных форматов (Parquet + CSV + DataFrame)
- Прототипирование ETL-пайплайнов и построение дашбордов
- Быстрая агрегация и отчёты по логам, BI-данным, IoT-стримам и пр.

📌 Советы:
- Используйте read_parquet, read_csv_auto и from_df() для гибкой загрузки данных
- Результаты запросов можно конвертировать обратно в pandas через .df()
- DuckDB поддерживает оконные функции, GROUP BY, JOIN, UNION, LIMIT, подзапросы и многое другое — это полноценный SQL-движок

🔗 Подробный гайд:
https://www.kdnuggets.com/integrating-duckdb-python-an-analytics-guide

#DuckDB #Python #DataScience #Analytics #SQL #Pandas #Parquet #BigData
🔥106👍3👎1🥰1



tgoop.com/data_math/785
Create:
Last Update:

🦆 Как использовать DuckDB с Python: практическое руководство по аналитике

DuckDB — это современная in-process аналитическая СУБД, разработанная как “SQLite для аналитики”. Она идеально подходит для обработки больших объёмов данных на локальной машине без необходимости поднимать сервер или использовать тяжёлые хранилища.

📦 Что делает DuckDB особенной?
- Работает как библиотека внутри Python (через `duckdb`)
- Поддерживает SQL-запросы напрямую к pandas DataFrame, CSV, Parquet, Arrow и другим источникам
- Оптимизирована под аналитические запросы: агрегации, группировки, фильтрации
- Мгновенно работает с большими файлами без предварительной загрузки

🧪 Пример рабочего сценария:

1️⃣ Чтение и анализ Parquet-файла:


import duckdb

duckdb.sql("SELECT COUNT(*), AVG(price) FROM 'data.parquet'")


2️⃣ Интеграция с pandas:

import pandas as pd

df = pd.read_csv("data.csv")
result = duckdb.sql("SELECT category, AVG(value) FROM df GROUP BY category").df()


3️⃣ Объединение нескольких источников:

duckdb.sql("""
SELECT a.user_id, b.event_time
FROM 'users.parquet' a
JOIN read_csv('events.csv') b
ON a.user_id = b.user_id
""")


🧠 Почему это важно:
- 📊 Вы можете использовать SQL и pandas одновременно
- 🚀 DuckDB быстрее pandas в большинстве аналитических задач, особенно на больших данных
- 🧩 Поддержка стандартов данных (Parquet, Arrow) даёт нативную интеграцию с экосистемой Data Science
- 🔧 Не требует настройки: просто установите через pip install duckdb

🎯 Применения:
- Локальный анализ данных (до десятков ГБ) — без Spark
- Объединение таблиц из разных форматов (Parquet + CSV + DataFrame)
- Прототипирование ETL-пайплайнов и построение дашбордов
- Быстрая агрегация и отчёты по логам, BI-данным, IoT-стримам и пр.

📌 Советы:
- Используйте read_parquet, read_csv_auto и from_df() для гибкой загрузки данных
- Результаты запросов можно конвертировать обратно в pandas через .df()
- DuckDB поддерживает оконные функции, GROUP BY, JOIN, UNION, LIMIT, подзапросы и многое другое — это полноценный SQL-движок

🔗 Подробный гайд:
https://www.kdnuggets.com/integrating-duckdb-python-an-analytics-guide

#DuckDB #Python #DataScience #Analytics #SQL #Pandas #Parquet #BigData

BY Математика Дата саентиста


Share with your friend now:
tgoop.com/data_math/785

View MORE
Open in Telegram


Telegram News

Date: |

Judge Hui described Ng as inciting others to “commit a massacre” with three posts teaching people to make “toxic chlorine gas bombs,” target police stations, police quarters and the city’s metro stations. This offence was “rather serious,” the court said. Among the requests, the Brazilian electoral Court wanted to know if they could obtain data on the origins of malicious content posted on the platform. According to the TSE, this would enable the authorities to track false content and identify the user responsible for publishing it in the first place. Telegram Channels requirements & features On Tuesday, some local media outlets included Sing Tao Daily cited sources as saying the Hong Kong government was considering restricting access to Telegram. Privacy Commissioner for Personal Data Ada Chung told to the Legislative Council on Monday that government officials, police and lawmakers remain the targets of “doxxing” despite a privacy law amendment last year that criminalised the malicious disclosure of personal information. The public channel had more than 109,000 subscribers, Judge Hui said. Ng had the power to remove or amend the messages in the channel, but he “allowed them to exist.”
from us


Telegram Математика Дата саентиста
FROM American