Warning: file_put_contents(aCache/aDaily/post/data_math/-774-775-776-774-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Математика Дата саентиста@data_math P.775
DATA_MATH Telegram 775
Forwarded from Machinelearning
🌟 V-Triune от MiniMax: RL для VLM.

V-Triune - фреймворк с новым методом обучения VL-моделей, через единый алгоритм подкрепления.

В отличие от традиционных методов трейна VLM, сосредоточенных на отдельных задачах вроде решения математических задач или обнаружения объектов, V-Triune обучает модели одновременно работать с рассуждениями и восприятием. RL в V-Triune действует как механизм «настройки» уже заложенных в модель возможностей, а не добавляет новые навыки.

Это достигается за счет 3 ключевых компонентов: форматирования данных на уровне выборок, вычисления наград через специализированные верификаторы и мониторинга метрик по источникам данных.

Например, динамическая награда IoU адаптирует пороги точности для обнаружения объектов — сначала стимулируя базовое понимание, а затем требуя высокой точности.


Тестирование проводилось на бенчмарке MEGA-Bench из440 задач — от анализа графиков до OCR. Экспериментальные модели Orsta (7B и 32B параметров), обученные с V-Triune, показали прирост производительности до +14,1% по сравнению с базовыми версиями.

На задачах восприятия (обнаружение объектов в COCO), улучшения достигли +12,17% для mAP@50. Для математических задач (MathVista) результаты выросли на 5%, а в OCR — на 1-2%. При этом система стабильно работала даже при обучении на смешанных данных, что косвенно подтвердило ее универсальность.

Minimax открыли (но пока не загрузили его в репозиторий) код V-Triune и модели Orsta:

🟢Orsta-32B-0326 - стабильная версия на более поздней QwenVL-2.5-32B;
🟠Orsta-32B-0321 - версия с замороженным ViT на базе QwenVL-2.5-32B-0321;
🟢Orsta-7B - на базе Qwen2.5-VL-7B-Instruct.

⚠️ В версии 0321 попытки совместного обновления визуального и языкового модулей приводили к взрыву градиентов, поэтому ViT пришлось заморозить. В 0326, благодаря исправлениям в архитектуре, RL-тренинг стал стабильнее. 0326 рекомендуется для задач, где критична точность и надежность форматов ответов.


📌Лицензирование: MIT License.


🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #VLM #RL #Framework #MiniMax
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2🔥1



tgoop.com/data_math/775
Create:
Last Update:

🌟 V-Triune от MiniMax: RL для VLM.

V-Triune - фреймворк с новым методом обучения VL-моделей, через единый алгоритм подкрепления.

В отличие от традиционных методов трейна VLM, сосредоточенных на отдельных задачах вроде решения математических задач или обнаружения объектов, V-Triune обучает модели одновременно работать с рассуждениями и восприятием. RL в V-Triune действует как механизм «настройки» уже заложенных в модель возможностей, а не добавляет новые навыки.

Это достигается за счет 3 ключевых компонентов: форматирования данных на уровне выборок, вычисления наград через специализированные верификаторы и мониторинга метрик по источникам данных.

Например, динамическая награда IoU адаптирует пороги точности для обнаружения объектов — сначала стимулируя базовое понимание, а затем требуя высокой точности.


Тестирование проводилось на бенчмарке MEGA-Bench из440 задач — от анализа графиков до OCR. Экспериментальные модели Orsta (7B и 32B параметров), обученные с V-Triune, показали прирост производительности до +14,1% по сравнению с базовыми версиями.

На задачах восприятия (обнаружение объектов в COCO), улучшения достигли +12,17% для mAP@50. Для математических задач (MathVista) результаты выросли на 5%, а в OCR — на 1-2%. При этом система стабильно работала даже при обучении на смешанных данных, что косвенно подтвердило ее универсальность.

Minimax открыли (но пока не загрузили его в репозиторий) код V-Triune и модели Orsta:

🟢Orsta-32B-0326 - стабильная версия на более поздней QwenVL-2.5-32B;
🟠Orsta-32B-0321 - версия с замороженным ViT на базе QwenVL-2.5-32B-0321;
🟢Orsta-7B - на базе Qwen2.5-VL-7B-Instruct.

⚠️ В версии 0321 попытки совместного обновления визуального и языкового модулей приводили к взрыву градиентов, поэтому ViT пришлось заморозить. В 0326, благодаря исправлениям в архитектуре, RL-тренинг стал стабильнее. 0326 рекомендуется для задач, где критична точность и надежность форматов ответов.


📌Лицензирование: MIT License.


🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #VLM #RL #Framework #MiniMax

BY Математика Дата саентиста






Share with your friend now:
tgoop.com/data_math/775

View MORE
Open in Telegram


Telegram News

Date: |

Some Telegram Channels content management tips Matt Hussey, editorial director of NEAR Protocol (and former editor-in-chief of Decrypt) responded to the news of the Telegram group with “#meIRL.” Ng, who had pleaded not guilty to all charges, had been detained for more than 20 months. His channel was said to have contained around 120 messages and photos that incited others to vandalise pro-government shops and commit criminal damage targeting police stations. Informative bank east asia october 20 kowloon
from us


Telegram Математика Дата саентиста
FROM American