DATA_MATH Telegram 775
Forwarded from Machinelearning
🌟 V-Triune от MiniMax: RL для VLM.

V-Triune - фреймворк с новым методом обучения VL-моделей, через единый алгоритм подкрепления.

В отличие от традиционных методов трейна VLM, сосредоточенных на отдельных задачах вроде решения математических задач или обнаружения объектов, V-Triune обучает модели одновременно работать с рассуждениями и восприятием. RL в V-Triune действует как механизм «настройки» уже заложенных в модель возможностей, а не добавляет новые навыки.

Это достигается за счет 3 ключевых компонентов: форматирования данных на уровне выборок, вычисления наград через специализированные верификаторы и мониторинга метрик по источникам данных.

Например, динамическая награда IoU адаптирует пороги точности для обнаружения объектов — сначала стимулируя базовое понимание, а затем требуя высокой точности.


Тестирование проводилось на бенчмарке MEGA-Bench из440 задач — от анализа графиков до OCR. Экспериментальные модели Orsta (7B и 32B параметров), обученные с V-Triune, показали прирост производительности до +14,1% по сравнению с базовыми версиями.

На задачах восприятия (обнаружение объектов в COCO), улучшения достигли +12,17% для mAP@50. Для математических задач (MathVista) результаты выросли на 5%, а в OCR — на 1-2%. При этом система стабильно работала даже при обучении на смешанных данных, что косвенно подтвердило ее универсальность.

Minimax открыли (но пока не загрузили его в репозиторий) код V-Triune и модели Orsta:

🟢Orsta-32B-0326 - стабильная версия на более поздней QwenVL-2.5-32B;
🟠Orsta-32B-0321 - версия с замороженным ViT на базе QwenVL-2.5-32B-0321;
🟢Orsta-7B - на базе Qwen2.5-VL-7B-Instruct.

⚠️ В версии 0321 попытки совместного обновления визуального и языкового модулей приводили к взрыву градиентов, поэтому ViT пришлось заморозить. В 0326, благодаря исправлениям в архитектуре, RL-тренинг стал стабильнее. 0326 рекомендуется для задач, где критична точность и надежность форматов ответов.


📌Лицензирование: MIT License.


🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #VLM #RL #Framework #MiniMax
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2🔥1



tgoop.com/data_math/775
Create:
Last Update:

🌟 V-Triune от MiniMax: RL для VLM.

V-Triune - фреймворк с новым методом обучения VL-моделей, через единый алгоритм подкрепления.

В отличие от традиционных методов трейна VLM, сосредоточенных на отдельных задачах вроде решения математических задач или обнаружения объектов, V-Triune обучает модели одновременно работать с рассуждениями и восприятием. RL в V-Triune действует как механизм «настройки» уже заложенных в модель возможностей, а не добавляет новые навыки.

Это достигается за счет 3 ключевых компонентов: форматирования данных на уровне выборок, вычисления наград через специализированные верификаторы и мониторинга метрик по источникам данных.

Например, динамическая награда IoU адаптирует пороги точности для обнаружения объектов — сначала стимулируя базовое понимание, а затем требуя высокой точности.


Тестирование проводилось на бенчмарке MEGA-Bench из440 задач — от анализа графиков до OCR. Экспериментальные модели Orsta (7B и 32B параметров), обученные с V-Triune, показали прирост производительности до +14,1% по сравнению с базовыми версиями.

На задачах восприятия (обнаружение объектов в COCO), улучшения достигли +12,17% для mAP@50. Для математических задач (MathVista) результаты выросли на 5%, а в OCR — на 1-2%. При этом система стабильно работала даже при обучении на смешанных данных, что косвенно подтвердило ее универсальность.

Minimax открыли (но пока не загрузили его в репозиторий) код V-Triune и модели Orsta:

🟢Orsta-32B-0326 - стабильная версия на более поздней QwenVL-2.5-32B;
🟠Orsta-32B-0321 - версия с замороженным ViT на базе QwenVL-2.5-32B-0321;
🟢Orsta-7B - на базе Qwen2.5-VL-7B-Instruct.

⚠️ В версии 0321 попытки совместного обновления визуального и языкового модулей приводили к взрыву градиентов, поэтому ViT пришлось заморозить. В 0326, благодаря исправлениям в архитектуре, RL-тренинг стал стабильнее. 0326 рекомендуется для задач, где критична точность и надежность форматов ответов.


📌Лицензирование: MIT License.


🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #VLM #RL #Framework #MiniMax

BY Математика Дата саентиста






Share with your friend now:
tgoop.com/data_math/775

View MORE
Open in Telegram


Telegram News

Date: |

The visual aspect of channels is very critical. In fact, design is the first thing that a potential subscriber pays attention to, even though unconsciously. Write your hashtags in the language of your target audience. Judge Hui described Ng as inciting others to “commit a massacre” with three posts teaching people to make “toxic chlorine gas bombs,” target police stations, police quarters and the city’s metro stations. This offence was “rather serious,” the court said. The initiatives announced by Perekopsky include monitoring the content in groups. According to the executive, posts identified as lacking context or as containing false information will be flagged as a potential source of disinformation. The content is then forwarded to Telegram's fact-checking channels for analysis and subsequent publication of verified information. Unlimited number of subscribers per channel
from us


Telegram Математика Дата саентиста
FROM American