DATA_MATH Telegram 773
🧠 Восстановление искажённых измерений с дневным смещением

У вас есть температурные измерения за 10 дней, но каждый день датчик добавляет случайное смещение (bias), постоянное в течение дня. Также есть шум измерений.

📊 Ваша задача:
1. Оценить bias по дням
2. Восстановить истинную температуру
3. Посчитать RMSE между восстановленной и настоящей температурой

📦 Генерация данных


import pandas as pd
import numpy as np

np.random.seed(42)
days = pd.date_range("2023-01-01", periods=10, freq="D")
true_temp = np.sin(np.linspace(0, 3 * np.pi, 240)) * 10 + 20
bias_per_day = np.random.uniform(-2, 2, size=len(days))

df = pd.DataFrame({
"datetime": pd.date_range("2023-01-01", periods=240, freq="H"),
})
df["day"] = df["datetime"].dt.date
df["true_temp"] = true_temp
df["bias"] = df["day"].map(dict(zip(days.date, bias_per_day)))
df["measured_temp"] = df["true_temp"] + df["bias"] + np.random.normal(0, 0.5, size=240)

🔍 Разбор: как оценить смещение

Идея: температура в течение дня плавно колеблется, но bias в этот день одинаков для всех точек. Если мы "сгладим" значения (например, скользящим средним), то можем аппроксимировать общий тренд — и вычесть его, получив оценку bias.

🔧 Способ: вычтем сглаженный тренд, затем усредним остатки по дню:

```python
# Сглаживаем тренд
df["trend"] = df["measured_temp"].rolling(window=12, center=True, min_periods=1).mean()

# Остатки (приближение к bias)
df["residual"] = df["measured_temp"] - df["trend"]

# Оценка bias как среднее отклонение внутри дня
bias_est = df.groupby("day")["residual"].mean()
df["estimated_bias"] = df["day"].map(bias_est)

# Восстановим температуру: measured - bias
df["restored_temp"] = df["measured_temp"] - df["estimated_bias"]
```

📊 Результаты

Оценим ошибку восстановления:

```python
from sklearn.metrics import mean_squared_error

rmse = mean_squared_error(df["true_temp"], df["restored_temp"], squared=False)
print(f"RMSE восстановления: {rmse:.4f}")
```

> Обычно RMSE ≈ 0.5–0.7 — это близко к стандартному отклонению шума, значит bias устранён успешно!

💡 Вывод

✔️ Простая техника — сглаживание + усреднение отклонений — позволяет оценить дневные смещения
✔️ Без знания "истинной" температуры можно получить довольно точную реконструкцию
✔️ Это напоминает реальные задачи очистки данных от сенсорных сдвигов или ошибок калибровки

📈 Отличный пример практики Data Science с уклоном в математику, временные ряды и обработку шумов!
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥72🥰1



tgoop.com/data_math/773
Create:
Last Update:

🧠 Восстановление искажённых измерений с дневным смещением

У вас есть температурные измерения за 10 дней, но каждый день датчик добавляет случайное смещение (bias), постоянное в течение дня. Также есть шум измерений.

📊 Ваша задача:
1. Оценить bias по дням
2. Восстановить истинную температуру
3. Посчитать RMSE между восстановленной и настоящей температурой

📦 Генерация данных


import pandas as pd
import numpy as np

np.random.seed(42)
days = pd.date_range("2023-01-01", periods=10, freq="D")
true_temp = np.sin(np.linspace(0, 3 * np.pi, 240)) * 10 + 20
bias_per_day = np.random.uniform(-2, 2, size=len(days))

df = pd.DataFrame({
"datetime": pd.date_range("2023-01-01", periods=240, freq="H"),
})
df["day"] = df["datetime"].dt.date
df["true_temp"] = true_temp
df["bias"] = df["day"].map(dict(zip(days.date, bias_per_day)))
df["measured_temp"] = df["true_temp"] + df["bias"] + np.random.normal(0, 0.5, size=240)

🔍 Разбор: как оценить смещение

Идея: температура в течение дня плавно колеблется, но bias в этот день одинаков для всех точек. Если мы "сгладим" значения (например, скользящим средним), то можем аппроксимировать общий тренд — и вычесть его, получив оценку bias.

🔧 Способ: вычтем сглаженный тренд, затем усредним остатки по дню:

```python
# Сглаживаем тренд
df["trend"] = df["measured_temp"].rolling(window=12, center=True, min_periods=1).mean()

# Остатки (приближение к bias)
df["residual"] = df["measured_temp"] - df["trend"]

# Оценка bias как среднее отклонение внутри дня
bias_est = df.groupby("day")["residual"].mean()
df["estimated_bias"] = df["day"].map(bias_est)

# Восстановим температуру: measured - bias
df["restored_temp"] = df["measured_temp"] - df["estimated_bias"]
```

📊 Результаты

Оценим ошибку восстановления:

```python
from sklearn.metrics import mean_squared_error

rmse = mean_squared_error(df["true_temp"], df["restored_temp"], squared=False)
print(f"RMSE восстановления: {rmse:.4f}")
```

> Обычно RMSE ≈ 0.5–0.7 — это близко к стандартному отклонению шума, значит bias устранён успешно!

💡 Вывод

✔️ Простая техника — сглаживание + усреднение отклонений — позволяет оценить дневные смещения
✔️ Без знания "истинной" температуры можно получить довольно точную реконструкцию
✔️ Это напоминает реальные задачи очистки данных от сенсорных сдвигов или ошибок калибровки

📈 Отличный пример практики Data Science с уклоном в математику, временные ряды и обработку шумов!

BY Математика Дата саентиста


Share with your friend now:
tgoop.com/data_math/773

View MORE
Open in Telegram


Telegram News

Date: |

You can invite up to 200 people from your contacts to join your channel as the next step. Select the users you want to add and click “Invite.” You can skip this step altogether. Public channels are public to the internet, regardless of whether or not they are subscribed. A public channel is displayed in search results and has a short address (link). Judge Hui described Ng as inciting others to “commit a massacre” with three posts teaching people to make “toxic chlorine gas bombs,” target police stations, police quarters and the city’s metro stations. This offence was “rather serious,” the court said. “Hey degen, are you stressed? Just let it all out,” he wrote, along with a link to join the group. Administrators
from us


Telegram Математика Дата саентиста
FROM American