DATA_MATH Telegram 771
📊 Математическая задача для Data Scientists: "Идеальная точка разбиения"

**Условие**

У тебя есть список чисел List[float], представляющий одномерное распределение (например, значения метрики или зарплаты).
Нужно определить: существует ли индекс, на котором можно разделить массив на две части так, чтобы стандартное отклонение слева и справа отличалось не более чем на ε (например, 0.1).

Формат:


def has_balanced_std_split(data: list[float], epsilon: float = 0.1) -> bool:
...


Пример:


data = [1.0, 2.0, 3.0, 4.0, 5.0]
# Разделение после 2 → [1.0, 2.0], [3.0, 4.0, 5.0]
# std слева ≈ 0.5, справа ≈ 0.816 → разница = 0.316 > 0.1 → не подходит


🔍 Подсказка
Используй statistics.stdev() или numpy.std(ddof=1) (с выборочной коррекцией).
Но не забывай, что длина подмассива должна быть как минимум 2.

---

Пример реализации:

```python
import statistics

def has_balanced_std_split(data: list[float], epsilon: float = 0.1) -> bool:
n = len(data)
if n < 4:
return False # Нужны хотя бы 2 элемента в каждой части

for i in range(2, n - 1):
left = data[:i]
right = data[i:]

if len(left) < 2 or len(right) < 2:
continue

std_left = statistics.stdev(left)
std_right = statistics.stdev(right)

if abs(std_left - std_right) <= epsilon:
return True

return False
```

📌 Пример использования:

```python
data = [10, 12, 11, 20, 21, 19]
print(has_balanced_std_split(data, epsilon=0.5)) # True или False в зависимости от разбивки
```

🎯 Что проверяет задача:

• понимание **дисперсии и стандартного отклонения**
• знание **статистических библиотек Python**
• работа с ограничениями на длину срезов
• мышление в духе «разделяй и анализируй»
👍63



tgoop.com/data_math/771
Create:
Last Update:

📊 Математическая задача для Data Scientists: "Идеальная точка разбиения"

**Условие**

У тебя есть список чисел List[float], представляющий одномерное распределение (например, значения метрики или зарплаты).
Нужно определить: существует ли индекс, на котором можно разделить массив на две части так, чтобы стандартное отклонение слева и справа отличалось не более чем на ε (например, 0.1).

Формат:


def has_balanced_std_split(data: list[float], epsilon: float = 0.1) -> bool:
...


Пример:


data = [1.0, 2.0, 3.0, 4.0, 5.0]
# Разделение после 2 → [1.0, 2.0], [3.0, 4.0, 5.0]
# std слева ≈ 0.5, справа ≈ 0.816 → разница = 0.316 > 0.1 → не подходит


🔍 Подсказка
Используй statistics.stdev() или numpy.std(ddof=1) (с выборочной коррекцией).
Но не забывай, что длина подмассива должна быть как минимум 2.

---

Пример реализации:

```python
import statistics

def has_balanced_std_split(data: list[float], epsilon: float = 0.1) -> bool:
n = len(data)
if n < 4:
return False # Нужны хотя бы 2 элемента в каждой части

for i in range(2, n - 1):
left = data[:i]
right = data[i:]

if len(left) < 2 or len(right) < 2:
continue

std_left = statistics.stdev(left)
std_right = statistics.stdev(right)

if abs(std_left - std_right) <= epsilon:
return True

return False
```

📌 Пример использования:

```python
data = [10, 12, 11, 20, 21, 19]
print(has_balanced_std_split(data, epsilon=0.5)) # True или False в зависимости от разбивки
```

🎯 Что проверяет задача:

• понимание **дисперсии и стандартного отклонения**
• знание **статистических библиотек Python**
• работа с ограничениями на длину срезов
• мышление в духе «разделяй и анализируй»

BY Математика Дата саентиста


Share with your friend now:
tgoop.com/data_math/771

View MORE
Open in Telegram


Telegram News

Date: |

To view your bio, click the Menu icon and select “View channel info.” Today, we will address Telegram channels and how to use them for maximum benefit. Co-founder of NFT renting protocol Rentable World emiliano.eth shared the group Tuesday morning on Twitter, calling out the "degenerate" community, or crypto obsessives that engage in high-risk trading. Matt Hussey, editorial director of NEAR Protocol (and former editor-in-chief of Decrypt) responded to the news of the Telegram group with “#meIRL.” In 2018, Telegram’s audience reached 200 million people, with 500,000 new users joining the messenger every day. It was launched for iOS on 14 August 2013 and Android on 20 October 2013.
from us


Telegram Математика Дата саентиста
FROM American