DATA_MATH Telegram 761
🖥 Задача: "Оптимизация вероятности успеха в стохастической системе"

📌 Условие:

Вы работаете над системой, где каждый эксперимент (тест, запуск модели, продукт) может быть успешным или неуспешным.
Результат одного запуска — 1 (успех) или 0 (провал).

Известно:

- Вероятность успеха одного эксперимента — неизвестна, обозначим её как p.
- У вас есть N исторических наблюдений: x1, x2, ..., xN, где каждое xi равно 0 или 1.

Вопросы:

1. Построить оценку вероятности успеха p и доверительный интервал на уровне 95%.
2. Рассчитать, сколько экспериментов нужно запустить, чтобы вероятность выхода в прибыль была выше 95%, учитывая:
- стоимость одного запуска C;
- прибыль от одного успешного эксперимента R.

---

▪️ Подсказки:

- Для оценки p используйте биномиальную модель.
- Для доверительного интервала:
- Можно использовать нормальное приближение (если выборка большая),
- Или Wilson-интервал для аккуратности.

---

▪️ Что оценивается:

- Правильная работа с вероятностями и доверием.
- Способность адекватно аппроксимировать биномиальные распределения.
- Чистота и практичность вычислений.

---

▪️ Разбор возможного решения:

▪️ 1. Оценка вероятности успеха:


# p_hat - оценка вероятности успеха
p_hat = sum(xi_list) / N


где xi_list — список из 0 и 1 (результаты экспериментов).

▪️ 2. Доверительный интервал через нормальное приближение:


import math
z = 1.96 # для 95% доверия
std_error = math.sqrt(p_hat * (1 - p_hat) / N)
lower_bound = p_hat - z * std_error
upper_bound = p_hat + z * std_error


▪️ 3. Wilson-интервал (более аккуратный):


z = 1.96 # для 95% доверия
center = (p_hat + z**2 / (2 * N)) / (1 + z**2 / N)
margin = (z * math.sqrt((p_hat * (1 - p_hat) / N) + (z**2 / (4 * N**2)))) / (1 + z**2 / N)
lower_bound = center - margin
upper_bound = center + margin


---

▪️ 4. Прибыльность эксперимента:

Формула прибыли при n экспериментах:


profit = successes * R - n * C


Требуется:


P(profit > 0) >= 0.95


Число успехов должно быть больше определённой границы:


min_successes = (n * C) / R


Если n велико, количество успехов приближается к нормальному распределению:


mean_successes = n * p_hat
std_successes = math.sqrt(n * p_hat * (1 - p_hat))


Для нормального приближения можно написать:


# Вероятность успешности через нормальное распределение
from scipy.stats import norm

# Вероятность, что количество успехов больше нужного
prob = 1 - norm.cdf(min_successes, loc=mean_successes, scale=std_successes)


Тогда перебором или через уравнение ищем минимальное n, чтобы prob >= 0.95.

---

▪️ Возможные подводные камни:

- Нельзя использовать нормальное приближение при малом N — нужна биномиальная модель.
- Неверное задание границ доверительного интервала может привести к неправильной стратегии запуска.
- Плохое понимание соотношения C и R приводит к ошибочным выводам об окупаемости.

---

📌Дополнительные вопросы:

- Как бы вы учли, что прибыль от успеха — случайная величина?
- Как пересчитать стратегии, если вероятность успеха зависит от времени (`p = f(t)`)?
- Как применить байесовский апдейт для оценки вероятности успеха?

---
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/data_math/761
Create:
Last Update:

🖥 Задача: "Оптимизация вероятности успеха в стохастической системе"

📌 Условие:

Вы работаете над системой, где каждый эксперимент (тест, запуск модели, продукт) может быть успешным или неуспешным.
Результат одного запуска — 1 (успех) или 0 (провал).

Известно:

- Вероятность успеха одного эксперимента — неизвестна, обозначим её как p.
- У вас есть N исторических наблюдений: x1, x2, ..., xN, где каждое xi равно 0 или 1.

Вопросы:

1. Построить оценку вероятности успеха p и доверительный интервал на уровне 95%.
2. Рассчитать, сколько экспериментов нужно запустить, чтобы вероятность выхода в прибыль была выше 95%, учитывая:
- стоимость одного запуска C;
- прибыль от одного успешного эксперимента R.

---

▪️ Подсказки:

- Для оценки p используйте биномиальную модель.
- Для доверительного интервала:
- Можно использовать нормальное приближение (если выборка большая),
- Или Wilson-интервал для аккуратности.

---

▪️ Что оценивается:

- Правильная работа с вероятностями и доверием.
- Способность адекватно аппроксимировать биномиальные распределения.
- Чистота и практичность вычислений.

---

▪️ Разбор возможного решения:

▪️ 1. Оценка вероятности успеха:


# p_hat - оценка вероятности успеха
p_hat = sum(xi_list) / N


где xi_list — список из 0 и 1 (результаты экспериментов).

▪️ 2. Доверительный интервал через нормальное приближение:


import math
z = 1.96 # для 95% доверия
std_error = math.sqrt(p_hat * (1 - p_hat) / N)
lower_bound = p_hat - z * std_error
upper_bound = p_hat + z * std_error


▪️ 3. Wilson-интервал (более аккуратный):


z = 1.96 # для 95% доверия
center = (p_hat + z**2 / (2 * N)) / (1 + z**2 / N)
margin = (z * math.sqrt((p_hat * (1 - p_hat) / N) + (z**2 / (4 * N**2)))) / (1 + z**2 / N)
lower_bound = center - margin
upper_bound = center + margin


---

▪️ 4. Прибыльность эксперимента:

Формула прибыли при n экспериментах:


profit = successes * R - n * C


Требуется:


P(profit > 0) >= 0.95


Число успехов должно быть больше определённой границы:


min_successes = (n * C) / R


Если n велико, количество успехов приближается к нормальному распределению:


mean_successes = n * p_hat
std_successes = math.sqrt(n * p_hat * (1 - p_hat))


Для нормального приближения можно написать:


# Вероятность успешности через нормальное распределение
from scipy.stats import norm

# Вероятность, что количество успехов больше нужного
prob = 1 - norm.cdf(min_successes, loc=mean_successes, scale=std_successes)


Тогда перебором или через уравнение ищем минимальное n, чтобы prob >= 0.95.

---

▪️ Возможные подводные камни:

- Нельзя использовать нормальное приближение при малом N — нужна биномиальная модель.
- Неверное задание границ доверительного интервала может привести к неправильной стратегии запуска.
- Плохое понимание соотношения C и R приводит к ошибочным выводам об окупаемости.

---

📌Дополнительные вопросы:

- Как бы вы учли, что прибыль от успеха — случайная величина?
- Как пересчитать стратегии, если вероятность успеха зависит от времени (`p = f(t)`)?
- Как применить байесовский апдейт для оценки вероятности успеха?

---

BY Математика Дата саентиста


Share with your friend now:
tgoop.com/data_math/761

View MORE
Open in Telegram


Telegram News

Date: |

Members can post their voice notes of themselves screaming. Interestingly, the group doesn’t allow to post anything else which might lead to an instant ban. As of now, there are more than 330 members in the group. Private channels are only accessible to subscribers and don’t appear in public searches. To join a private channel, you need to receive a link from the owner (administrator). A private channel is an excellent solution for companies and teams. You can also use this type of channel to write down personal notes, reflections, etc. By the way, you can make your private channel public at any moment. Some Telegram Channels content management tips On June 7, Perekopsky met with Brazilian President Jair Bolsonaro, an avid user of the platform. According to the firm's VP, the main subject of the meeting was "freedom of expression." Just at this time, Bitcoin and the broader crypto market have dropped to new 2022 lows. The Bitcoin price has tanked 10 percent dropping to $20,000. On the other hand, the altcoin space is witnessing even more brutal correction. Bitcoin has dropped nearly 60 percent year-to-date and more than 70 percent since its all-time high in November 2021.
from us


Telegram Математика Дата саентиста
FROM American