DATA_MATH Telegram 753
🌟 DeepMath-103K — датасет для прокачки LLM в продвинутой математике

DeepMath-103K — это новый мощный набор задач для обучения больших языковых моделей (LLMs) математическому рассуждению на высоком уровне сложности с помощью reinforcement learning (RL).

📦 Что в наборе?
103 000+ задач уровня сложности 5–9 (от среднего до продвинутого уровня).

Каждая задача включает:

📌 Верифицируемый ответ — важно для обучения с подкреплением.

🧪 3 решения, сгенерированных моделью R1 — для обучения с учителем или дистилляции.

Полная очистка от утечек данных (decontaminated) — можно безопасно использовать на бенчмарках.

📊 Почему это важно?
Модели, обученные на DeepMath-103K, показывают существенный прирост точности на сложных математических задачах и бенчмарках (MATH, GSM8K, MiniF2F и др.).

🛠 Применение:
Fine-tuning моделей (например, GPT, LLaMA) для математического reasoning.

RLHF (reinforcement learning with human feedback) и self-improvement.

Дистилляция сильных моделей в более компактные.

🔜PAPER: https://arxiv.org/abs/2504.11456
🔜CODE: https://github.com/zwhe99/DeepMath
🔜 SET: https://huggingface.co/datasets/zwhe99/DeepMath-103K

@data_math
Please open Telegram to view this post
VIEW IN TELEGRAM
👍43🔥32



tgoop.com/data_math/753
Create:
Last Update:

🌟 DeepMath-103K — датасет для прокачки LLM в продвинутой математике

DeepMath-103K — это новый мощный набор задач для обучения больших языковых моделей (LLMs) математическому рассуждению на высоком уровне сложности с помощью reinforcement learning (RL).

📦 Что в наборе?
103 000+ задач уровня сложности 5–9 (от среднего до продвинутого уровня).

Каждая задача включает:

📌 Верифицируемый ответ — важно для обучения с подкреплением.

🧪 3 решения, сгенерированных моделью R1 — для обучения с учителем или дистилляции.

Полная очистка от утечек данных (decontaminated) — можно безопасно использовать на бенчмарках.

📊 Почему это важно?
Модели, обученные на DeepMath-103K, показывают существенный прирост точности на сложных математических задачах и бенчмарках (MATH, GSM8K, MiniF2F и др.).

🛠 Применение:
Fine-tuning моделей (например, GPT, LLaMA) для математического reasoning.

RLHF (reinforcement learning with human feedback) и self-improvement.

Дистилляция сильных моделей в более компактные.

🔜PAPER: https://arxiv.org/abs/2504.11456
🔜CODE: https://github.com/zwhe99/DeepMath
🔜 SET: https://huggingface.co/datasets/zwhe99/DeepMath-103K

@data_math

BY Математика Дата саентиста




Share with your friend now:
tgoop.com/data_math/753

View MORE
Open in Telegram


Telegram News

Date: |

Polls Judge Hui described Ng as inciting others to “commit a massacre” with three posts teaching people to make “toxic chlorine gas bombs,” target police stations, police quarters and the city’s metro stations. This offence was “rather serious,” the court said. Activate up to 20 bots How to Create a Private or Public Channel on Telegram? The best encrypted messaging apps
from us


Telegram Математика Дата саентиста
FROM American