Warning: file_put_contents(aCache/aDaily/post/data_math/-692-693-692-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Математика Дата саентиста@data_math P.693
DATA_MATH Telegram 693
Forwarded from Machinelearning
🌟 Oumi: опенсорс-фреймворк полного цикла для LLM.

Oumi - открытая платформа для разработки, файнтюна, оценки и экспериментов с языковыми и мультимодальными моделями, созданная совместными усилиями исследователей из 13 ведущих университетов.

Oumi предоставляет инструменты и рабочие процессы для разработки и запуска масштабных экспериментов на кластере, развертывания моделей в рабочей среде и поддерживает методы распределенного обучения (FSDP, DDP):

🟢обучение и файнтюн моделей от 10M до 405B параметров методами SFT, LoRA, QLoRA и DPO;
🟢поддержку популярных семейств моделей: Llama, DeepSeek, Qwen и Phi;
🟢синтез и курирование обучающих данных с использованием LLM-judge;
🟢быстрое развертывание моделей в средах vLLM и SGLang;
🟢проведение комплексного бенчмаркинга моделей по стандартным тестам;
🟢возможность подключения по API OpenAI, Anthropic и Vertex AI;
🟢интеграция с библиотекой Transformers.

В репозитории проекта собраны готовые ноутбуки и скрипты для каждого из этапов жизненного цикла моделей, а подробная документация по использованию поможет легко освоить эту платформу.

📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Документация
🟡Сообщество в Discord
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Oumi #Framework
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4



tgoop.com/data_math/693
Create:
Last Update:

🌟 Oumi: опенсорс-фреймворк полного цикла для LLM.

Oumi - открытая платформа для разработки, файнтюна, оценки и экспериментов с языковыми и мультимодальными моделями, созданная совместными усилиями исследователей из 13 ведущих университетов.

Oumi предоставляет инструменты и рабочие процессы для разработки и запуска масштабных экспериментов на кластере, развертывания моделей в рабочей среде и поддерживает методы распределенного обучения (FSDP, DDP):

🟢обучение и файнтюн моделей от 10M до 405B параметров методами SFT, LoRA, QLoRA и DPO;
🟢поддержку популярных семейств моделей: Llama, DeepSeek, Qwen и Phi;
🟢синтез и курирование обучающих данных с использованием LLM-judge;
🟢быстрое развертывание моделей в средах vLLM и SGLang;
🟢проведение комплексного бенчмаркинга моделей по стандартным тестам;
🟢возможность подключения по API OpenAI, Anthropic и Vertex AI;
🟢интеграция с библиотекой Transformers.

В репозитории проекта собраны готовые ноутбуки и скрипты для каждого из этапов жизненного цикла моделей, а подробная документация по использованию поможет легко освоить эту платформу.

📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Документация
🟡Сообщество в Discord
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Oumi #Framework

BY Математика Дата саентиста





Share with your friend now:
tgoop.com/data_math/693

View MORE
Open in Telegram


Telegram News

Date: |

Telegram users themselves will be able to flag and report potentially false content. Just as the Bitcoin turmoil continues, crypto traders have taken to Telegram to voice their feelings. Crypto investors can reduce their anxiety about losses by joining the “Bear Market Screaming Therapy Group” on Telegram. End-to-end encryption is an important feature in messaging, as it's the first step in protecting users from surveillance. But a Telegram statement also said: "Any requests related to political censorship or limiting human rights such as the rights to free speech or assembly are not and will not be considered." How to build a private or public channel on Telegram?
from us


Telegram Математика Дата саентиста
FROM American