Warning: file_put_contents(aCache/aDaily/post/data_math/-498-499-500-501-498-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Математика Дата саентиста@data_math P.499
DATA_MATH Telegram 499
Forwarded from Machinelearning
🌟 SegVLAD: метод визуального распознавания мест.

SegVLAD - метод для решения задач визуального распознавания мест (VPR) в условиях значительных изменений ракурса. SegVLAD использует сегментацию изображений, разделяя их на значимые объекты ("вещи"). Вместо того, чтобы кодировать все изображение целиком, как это делают традиционные методы VPR, SegVLAD кодирует и ищет соответствия на уровне отдельных сегментов.

Основа архитектуры SegVLAD - набор перекрывающихся подграфов сегментов SuperSegments. Подграфы создаются путем расширения окрестности каждого сегмента, учитывая информацию о соседних сегментах, полученную с помощью триангуляции Делоне.

Для каждого SuperSegment вычисляется дескриптор с использованием метода VLAD (Vector of Locally Aggregated Descriptors).

VLAD агрегирует локальные дескрипторы пикселей, полученные с помощью предварительно обученного DINOv2, который способен извлекать высокоуровневые признаки, инвариантные к различным условиям съемки.

SegVLAD обучался на наборах данных, включающих как уличные, так и внутренние среды: Pitts30k, AmsterTime, Mapillary Street Level Sequences (MSLS), SF-XL, Revisted Oxford5K, Revisited Paris6k, Baidu Mall, 17Places, InsideOut и VPAir.

Тесты SegVLAD показали, что метод превосходит современные VPR, особенно на датасетах с большими изменениями точки обзора. SegVLAD является универсальным и может быть использован с различными методами сегментации изображений и кодировщиками признаков.

Проект программной реализации метода SegVLAD - Revisit Anything.

▶️Локальный запуск с набором данных 17 places из датасета AnyLock (~ 32GB) и моделями SAM+DINO:

⚠️ Перед запуском подготовьте данные датасета согласно структуре и укажите путь к данным в place_rec_global_config.py/

# Шаг1 - выбор метода (DINO/SAM):
python place_rec_SAM_DINO.py --dataset <> --method DINO/SAM

# Шаг2 - генерация VLAD cluster center (опционально):
python vlad_c_centers_pt_gen.py --dataset <>

# Шаг 3 - извлечение PCA:
place_rec_global_any_dataset_pca_extraction.py --dataset <> --experiment <> --vocab-vlad <domain/map>

# Шаг 4 - запуск SegVLAD:
place_rec_main.py --dataset <> --experiment <> --vocab-vlad <domain/map> --save_results <True/False>


📌Лицензирование : BSD-3-Clause license.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #SAM #DINO #VPR #SegVLAD
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥32



tgoop.com/data_math/499
Create:
Last Update:

🌟 SegVLAD: метод визуального распознавания мест.

SegVLAD - метод для решения задач визуального распознавания мест (VPR) в условиях значительных изменений ракурса. SegVLAD использует сегментацию изображений, разделяя их на значимые объекты ("вещи"). Вместо того, чтобы кодировать все изображение целиком, как это делают традиционные методы VPR, SegVLAD кодирует и ищет соответствия на уровне отдельных сегментов.

Основа архитектуры SegVLAD - набор перекрывающихся подграфов сегментов SuperSegments. Подграфы создаются путем расширения окрестности каждого сегмента, учитывая информацию о соседних сегментах, полученную с помощью триангуляции Делоне.

Для каждого SuperSegment вычисляется дескриптор с использованием метода VLAD (Vector of Locally Aggregated Descriptors).

VLAD агрегирует локальные дескрипторы пикселей, полученные с помощью предварительно обученного DINOv2, который способен извлекать высокоуровневые признаки, инвариантные к различным условиям съемки.

SegVLAD обучался на наборах данных, включающих как уличные, так и внутренние среды: Pitts30k, AmsterTime, Mapillary Street Level Sequences (MSLS), SF-XL, Revisted Oxford5K, Revisited Paris6k, Baidu Mall, 17Places, InsideOut и VPAir.

Тесты SegVLAD показали, что метод превосходит современные VPR, особенно на датасетах с большими изменениями точки обзора. SegVLAD является универсальным и может быть использован с различными методами сегментации изображений и кодировщиками признаков.

Проект программной реализации метода SegVLAD - Revisit Anything.

▶️Локальный запуск с набором данных 17 places из датасета AnyLock (~ 32GB) и моделями SAM+DINO:

⚠️ Перед запуском подготовьте данные датасета согласно структуре и укажите путь к данным в place_rec_global_config.py/

# Шаг1 - выбор метода (DINO/SAM):
python place_rec_SAM_DINO.py --dataset <> --method DINO/SAM

# Шаг2 - генерация VLAD cluster center (опционально):
python vlad_c_centers_pt_gen.py --dataset <>

# Шаг 3 - извлечение PCA:
place_rec_global_any_dataset_pca_extraction.py --dataset <> --experiment <> --vocab-vlad <domain/map>

# Шаг 4 - запуск SegVLAD:
place_rec_main.py --dataset <> --experiment <> --vocab-vlad <domain/map> --save_results <True/False>


📌Лицензирование : BSD-3-Clause license.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #SAM #DINO #VPR #SegVLAD

BY Математика Дата саентиста






Share with your friend now:
tgoop.com/data_math/499

View MORE
Open in Telegram


Telegram News

Date: |

How to create a business channel on Telegram? (Tutorial) It’s yet another bloodbath on Satoshi Street. As of press time, Bitcoin (BTC) and the broader cryptocurrency market have corrected another 10 percent amid a massive sell-off. Ethereum (EHT) is down a staggering 15 percent moving close to $1,000, down more than 42 percent on the weekly chart. Users are more open to new information on workdays rather than weekends. Over 33,000 people sent out over 1,000 doxxing messages in the group. Although the administrators tried to delete all of the messages, the posting speed was far too much for them to keep up. Telegram message that reads: "Bear Market Screaming Therapy Group. You are only allowed to send screaming voice notes. Everything else = BAN. Text pics, videos, stickers, gif = BAN. Anything other than screaming = BAN. You think you are smart = BAN.
from us


Telegram Математика Дата саентиста
FROM American