Warning: file_put_contents(aCache/aDaily/post/data_math/-471-472-471-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Математика Дата саентиста@data_math P.471
DATA_MATH Telegram 471
Forwarded from Machinelearning
🌟 Пространственно-временное прогнозирование с помощью Байесовских нейронных полей.

Байесовские нейронные поля (Bayes NF) - метод масштабируемого пространственно-временного прогнозирования, объединяющий архитектуру глубокой нейронной сети моделирования функций с иерархическим Байесовским моделированием для точной оценки неопределенности в сложных пространственно-временных полях.

Bayes NF строятся на основе Байесовской нейронной сети, отображающей многомерные пространственно-временные координаты в действительное поле.

Для получения высокой априорной вероятности для данных как с низко-, так и с высокочастотными вариациями, к исходным данным о времени и положении, подающимся в сеть, добавляются признаки Фурье, а чтобы учитывать априорные неопределенности, параметры сети получают априорное распределение.

Апостериорный вывод осуществляется с помощью стохастических ансамблей оценки максимального апостериори (MAP) или вариационно обученных суррогатов.

Метод Bayes NF относительно прост, он может обрабатывать пропущенные данные и обучаться по полному распределению вероятностей для произвольных пространственно-временных индексов.

Bayes NF универсален и применим к различным наборам данных без необходимости разработки новой модели для каждого случая или применения специфических для набора данных аппроксимаций вывода.

⚠️ Для локального запуска BayesNF на средних и больших объемах данных требуется GPU.


▶️ Практические туториалы с возможностью запуска на Google Coolab:

🟢анализ на основе пространственно-временного набора данных из 20 временных рядов еженедельных случаев заболевания ветряной оспой в Венгрии в период с 2005 по 2015 гг. Блокнот;

🟢анализ данных из об уровне загрязнения воздуха, измеряемом датчиками по всему Лондону каждый час. Блокнот.


▶️Локальная установка:

# Install bayesnf from PIP into venv:
$ python -m venv pyenv
$ source pyenv/bin/activate
$ python -m pip install -U bayesnf

# Install dependencies for Python 3.10
$ python -m pip install -r requirements.Python3.10.14.txt



📌Лицензирование : Apache 2.0 License.


🟡Документация
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Predictions #BAYESNF
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍92🔥1



tgoop.com/data_math/471
Create:
Last Update:

🌟 Пространственно-временное прогнозирование с помощью Байесовских нейронных полей.

Байесовские нейронные поля (Bayes NF) - метод масштабируемого пространственно-временного прогнозирования, объединяющий архитектуру глубокой нейронной сети моделирования функций с иерархическим Байесовским моделированием для точной оценки неопределенности в сложных пространственно-временных полях.

Bayes NF строятся на основе Байесовской нейронной сети, отображающей многомерные пространственно-временные координаты в действительное поле.

Для получения высокой априорной вероятности для данных как с низко-, так и с высокочастотными вариациями, к исходным данным о времени и положении, подающимся в сеть, добавляются признаки Фурье, а чтобы учитывать априорные неопределенности, параметры сети получают априорное распределение.

Апостериорный вывод осуществляется с помощью стохастических ансамблей оценки максимального апостериори (MAP) или вариационно обученных суррогатов.

Метод Bayes NF относительно прост, он может обрабатывать пропущенные данные и обучаться по полному распределению вероятностей для произвольных пространственно-временных индексов.

Bayes NF универсален и применим к различным наборам данных без необходимости разработки новой модели для каждого случая или применения специфических для набора данных аппроксимаций вывода.

⚠️ Для локального запуска BayesNF на средних и больших объемах данных требуется GPU.


▶️ Практические туториалы с возможностью запуска на Google Coolab:

🟢анализ на основе пространственно-временного набора данных из 20 временных рядов еженедельных случаев заболевания ветряной оспой в Венгрии в период с 2005 по 2015 гг. Блокнот;

🟢анализ данных из об уровне загрязнения воздуха, измеряемом датчиками по всему Лондону каждый час. Блокнот.


▶️Локальная установка:

# Install bayesnf from PIP into venv:
$ python -m venv pyenv
$ source pyenv/bin/activate
$ python -m pip install -U bayesnf

# Install dependencies for Python 3.10
$ python -m pip install -r requirements.Python3.10.14.txt



📌Лицензирование : Apache 2.0 License.


🟡Документация
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Predictions #BAYESNF

BY Математика Дата саентиста





Share with your friend now:
tgoop.com/data_math/471

View MORE
Open in Telegram


Telegram News

Date: |

Ng, who had pleaded not guilty to all charges, had been detained for more than 20 months. His channel was said to have contained around 120 messages and photos that incited others to vandalise pro-government shops and commit criminal damage targeting police stations. Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators. A vandalised bank during the 2019 protest. File photo: May James/HKFP. Done! Now you’re the proud owner of a Telegram channel. The next step is to set up and customize your channel. 5Telegram Channel avatar size/dimensions
from us


Telegram Математика Дата саентиста
FROM American