Notice: file_put_contents(): Write of 9791 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50

Warning: file_put_contents(): Only 8192 of 17983 bytes written, possibly out of free disk space in /var/www/tgoop/post.php on line 50
Анализ данных (Data analysis)@data_analysis_ml P.3801
DATA_ANALYSIS_ML Telegram 3801
🎯 Hugging Face показали, как ускорить обучение мультимодальных моделей, устранив главное узкое место — неэффективную загрузку данных.

Они представили Multimodal Data Pipeline (MMDP) — мощный, но простой пайплайн, который решает проблему простоя GPU из-за паддинга и медленного I/O.

Вот как это работает:

1. Визуализация данных — сначала анализируются длины текстов и структура мультимодальных примеров.
2. Constrained Padding — вместо бездумного паддинга, обрезаются аномально длинные примеры.
3. Packing как bin-packing — батчи собираются по максимальному числу токенов, а не по фиксированному количеству примеров.
4. Multimodal-aware batching — учитывается и число изображений в батче.
5. ConstantLengthDataset — кастомный класс с producer-consumer очередями и плотной упаковкой без паддинга.

💡 Результат — более плотные батчи, меньше токенов вхолостую, выше эффективность обучения.

Исходники и туториал:
📌 https://huggingface.co/blog/mmdp
📌 https://github.com/ariG23498/mmdp

Если ты тренируешь VLM или LLM с изображениями — это must-have.

@data_analysis_ml
11👍3🔥2



tgoop.com/data_analysis_ml/3801
Create:
Last Update:

🎯 Hugging Face показали, как ускорить обучение мультимодальных моделей, устранив главное узкое место — неэффективную загрузку данных.

Они представили Multimodal Data Pipeline (MMDP) — мощный, но простой пайплайн, который решает проблему простоя GPU из-за паддинга и медленного I/O.

Вот как это работает:

1. Визуализация данных — сначала анализируются длины текстов и структура мультимодальных примеров.
2. Constrained Padding — вместо бездумного паддинга, обрезаются аномально длинные примеры.
3. Packing как bin-packing — батчи собираются по максимальному числу токенов, а не по фиксированному количеству примеров.
4. Multimodal-aware batching — учитывается и число изображений в батче.
5. ConstantLengthDataset — кастомный класс с producer-consumer очередями и плотной упаковкой без паддинга.

💡 Результат — более плотные батчи, меньше токенов вхолостую, выше эффективность обучения.

Исходники и туториал:
📌 https://huggingface.co/blog/mmdp
📌 https://github.com/ariG23498/mmdp

Если ты тренируешь VLM или LLM с изображениями — это must-have.

@data_analysis_ml

BY Анализ данных (Data analysis)




Share with your friend now:
tgoop.com/data_analysis_ml/3801

View MORE
Open in Telegram


Telegram News

Date: |

Click “Save” ; How to Create a Private or Public Channel on Telegram? Telegram Channels requirements & features Today, we will address Telegram channels and how to use them for maximum benefit. During a meeting with the president of the Supreme Electoral Court (TSE) on June 6, Telegram's Vice President Ilya Perekopsky announced the initiatives. According to the executive, Brazil is the first country in the world where Telegram is introducing the features, which could be expanded to other countries facing threats to democracy through the dissemination of false content.
from us


Telegram Анализ данных (Data analysis)
FROM American