Telegram Web
Хотите заниматься искусственным интеллектом, строить карьеру в топовых IT-компаниях и разрабатывать технологии будущего? Поступайте на AI360!

AI360 — это уникальная бакалаврская программа, разработанная Яндексом, Сбером и 5 ведущими университетами России. Она позволяет получить актуальные знания и практический опыт, чтобы стать востребованным профессионалом в одной из самых динамично развивающихся областей — ИИ.

На AI360 вы будете обучаться у лучших практиков отрасли, погружаться в реальные проекты крупнейших IT-компаний, участвовать в международных конференциях и проходить межвузовские модули в ведущих университетах-партнёрах. А ещё вас ждёт стипендия, которая поможет сосредоточиться на достижении больших целей в IT!

Переходите по ссылке, чтобы узнать подробности и подать документы в один из вузов — НИУ ВШЭ, МФТИ, ИТМО, СПбГУ или Университет Иннополис! Набор открыт до 25 июля: https://bit.ly/43mHJm5
This media is not supported in your browser
VIEW IN TELEGRAM
🌟 Илон Маск говорит, что Grok 3.5 будет рассуждать, исходя из первых принципов, используя физически обоснованные методы для направления мышления.

Модель разбирает сложные задачи до фундаментальных истин, а затем выстраивает логику «снизу вверх», проверяя выводы на соответствие базовым законам.
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 Skywork.ai — первый в мире AI-офис с глубоким исследованием (DeepResearch)

Стартап Skywork.ai запустился глобально и представил уникальное решение — интеллектуальную рабочую среду, в которую встроены «суперагенты» на базе AI. Они умеют проводить глубокий анализ данных и создавать документы, таблицы, презентации и даже подкасты — буквально по одному запросу.

🔍 Что такое Skywork.ai:

📄 Docs — пишет отчёты, статьи и обзоры, подкреплённые фактами и источниками
📊 Sheets — строит таблицы, графики и проводит анализ данных
📽️ Slides — делает готовые презентации с дизайном
🌐 Webpages & Podcasts — создаёт веб-контент и аудио на основе анализа
🧠 General — универсальный агент: понимает тексты, изображения, видео и музыку

🧠 Главное отличие — DeepResearch

Это не просто генерация текста. Skywork.ai:
- Понимает контекст
- Уточняет, что вы хотите (с помощью формы Clarification Card)
- Показывает источники информации прямо в тексте
- Делает выводы на основе проверенных данных

🎯 Преимущества:

Создаёт отчёты и презентации за минуты
Все факты подтверждены источниками
Можно экспортировать в PDF, Excel, PowerPoint
Работает с текстом, таблицами, аудио, видео
Подходит для аналитиков, маркетологов, исследователей, авторов

💸 Цена — от $19.99 в месяц. Уже доступно по всему миру, без инвайтов.

📌 Попробовать просто:
1. Зарегистрируйтесь на [skywork.ai](https://skywork.ai)
2. Введите свой запрос (например: «Сделай отчёт по рынку генеративного ИИ»)
3. Уточните цели через форму Clarification Card
4. Получите готовый документ, графики или презентацию

Skywork Super Agents доступен как онлайн сервис (стоимость от $20/мес., есть пробный период), а для разработчиков открыли исходники фреймворка DeepResearch и API для вызова агентов по выбору.
globenewswire.com

#AI #SkyworkAI #DeepResearch #productivity #документы #презентации #таблицы
😢 Нет, я не плачу, это просто слёзы...
Please open Telegram to view this post
VIEW IN TELEGRAM
🧠 GAIA — новый ориентир для General AI Assistants

GAIA — это benchmark, который проверяет, насколько AI-ассистенты могут мыслить, действовать и работать с инструментами в реальных.

📊 Что тестируется

- 466 заданий, требующих:
- логического мышления и планирования
- работы с вебом и мультимодальностью (текст, изображения)
- использования инструментов — браузера, кода, анализа файлов и пр.
- Задания просты для человека, но AI решает их с трудом (люди получают ~92 %, GPT‑4 + плагины — ~15 %)

🔍 Почему это важно

- В отличие от других benchmark-ов, GAIA фокусируется на настоящих задачах, а не узкоспециализированных тестах
- Задания ясны и дают однозначный ответ, что облегчает автоматическую оценку
- Benchmark защищён от «запоминания» — задачи редко встречаются в открытых данных и требуют последовательных действий

🛠️ Как работает

1. Задачи задаются "в ноль" — без примеров
2. AI получает вопрос (текст и/или файл) и должен самостоятельно:
- искать в интернете
- обрабатывать мультимодальные данные
- выполнять код или анализ
3. Ответы оцениваются автоматически — только один правильный вариант

Перспективы и вызовы

- Пока лишь немногие модели приближаются к человеческому уровню — GPT‑4 с плагинами на ~15 %
- Benchmark рассчитан на долгосрочное развитие AGI — от точности решения до открытости и надёжности оценивания
- GAIA подчёркивает необходимость создания систем, способных последовательно действовать, а не просто «угадывать» ответы.

🔗 Github: https://github.com/Intelligent-Internet/ii-agent
🔗 GAIA Examples:
https://ii-agent-gaia.ii.inc
🩺 Google выпустила MedGemma — открытые модели ИИ для медицины

На Hugging Face вышла коллекция MedGemma, созданная Google на базе Gemma 3 специально для медицинских задач. Это мощные модели, способные анализировать как текст, так и медицинские изображения — от рентгена до дерматологии.

📦 В коллекции:
medgemma-4b-it — мультимодальная модель (текст + изображения)
medgemma-4b-pt — предварительно обученная версия
medgemma-27b-text-it — огромная текстовая модель для клинической документации

🔍 Что умеют:
Обнаружение патологий на рентген-снимках
Ответы на медицинские вопросы (VQA)
Генерация медицинских отчётов
Обработка клинических заметок, триажа, историй болезни

📊 Бенчмарки:
• CheXpert F1 (Top‑5): 48.1 vs 31.2 у базовой
• DermMCQA точность: 71.8%
• VQA‑Rad F1: 49.9

🧪 Пример использования:

from transformers import pipeline
pipe = pipeline("image-text-to-text", model="google/medgemma-4b-it")


🔗 Hugging Face: https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4

📝 Лицензия: Apache 2.0 (с медицинским соглашением)

#MedGemma #GoogleAI #Gemma3 #HealthcareAI #RadiologyAI #MedicalAI #OpenSourceAI #HuggingFace
👾 SGLang — промышленный фреймворк для быстрого обслуживания LLM. Проект предлагает готовое решение для быстрого разворачивания модели в продакшене — от оптимизированного рантайма до удобного API. Проект уже используют в NVIDIA, Google Cloud и LinkedIn для обработки триллионов токенов ежедневно на парках из 100k+ GPU. Установка — pip install sglang, а для масштабирования есть туториалы по tensor parallelism.

Ключевая фишка — RadixAttention: система кеширования префиксов, сокращающая время генерации. Поддерживает все популярные модели и фичи вроде speculative decoding или квантования INT4. Для разработчиков есть Python-интерфейс с контролем потока и мультимодальным вводом.

🤖 GitHub

@data_analysis_ml
Media is too big
VIEW IN TELEGRAM
🎥 Veo3 — новая эра генерации видео от Google DeepMind

Veo3 позволяет создавать видео по тексту — теперь даже с диалогами с одного промпта.
Результат: синхронная речь, живые сцены и минимум усилий.

Один из креаторов рассказал, как начал с идеи «пластикового ребёнка», а получил эмоциональную историю с настоящим сюжетом. Офисные сцены, шутки, даже синхрон губ — всё сработало с первого раза.

⚠️ Единственное ограничение: image-to-video хуже справляется с речью, и для стабильности в этом видео используется Pixverse.

Veo3 уже применяют для pre-viz в реальных проектах. Черипики получаются настолько хорошими, что их не хотят менять 😄

👏 Респект Google DeepMind — Veo3 делает видео генерацию по-настоящему живой.

@data_analysis_ml
🧠 Новая работа от ANSE Project: модель уже знает, какой шум лучший

Исследователи Кванён Ким и Санхён Ким предложили улучшение для видео-диффузионных моделей — метод ANSE (Active Noise Selection for Generation).

🔍 В чём идея?

В диффузионных моделях начальный шум влияет на результат. Один и тот же prompt с разными шумами может дать совершенно разные видео — по качеству, стилю и соответствию запросу.

ANSE предлагает не выбирать шум случайно, а использовать внутренние сигналы модели (внимание/attention), чтобы активно выбрать лучший шум перед генерацией.

🧪 Как это работает?

- Используется BANSA (Bayesian Active Noise Selection via Attention) — метрика на основе энтропии внимания
- Она измеряет, насколько модель "уверена" в своём внимании при разных инициализациях шума
- Для ускорения применяется аппроксимация через бернуллиевы маски и выборку подслоёв

📈 Результаты:

На моделях CogVideoX-2B и 5B метод ANSE:
• улучшает качество и согласованность видео
• требует всего на ~10% больше времени на inference
• показывает более стабильные и осмысленные результаты

📎 Подробнее: https://arxiv.org/abs/2505.17561
🌐 Проект: https://anse-project.github.io/anse-project/
Выгодная инфраструктура с GPU для проектов любого масштаба

Если вы создаете приложения на базе ИИ, занимаетесь анализом данных и сложными вычислениями, вам знакома проблема нехватки ресурсов GPU. С Selectel о ней можно забыть. Здесь есть мощные серверы с видеокартами для решения задач любой сложности всего от 29 ₽/час:

Почему стоит выбрать аренду серверов с GPU в Selectel:

Широкий выбор видеокарт: Более 20 моделей карт — от GTX 1080 до профессиональных H100 и А100 (40 и 80 ГБ).
Гибкость и масштабируемость: Мгновенное масштабирование под растущие нагрузки, стандартные и индивидуальные конфигурации с нужной видеокартой.
Высокий уровень безопасности: серверы Selectel соответствуют международным и российским стандартам безопасности, включая 152-ФЗ (УЗ-1), PCI DSS, ISO 27001, 27017 и 27018.

Разверните ваш проект на серверах с GPU в Selectel от 29 ₽/час:

Реклама. АО «Селектел», ИНН 7810962785, ERID: 2VtzquspGb7
🧠 VLM-3R: Мультимодальный агент нового поколения

VLM-3R — это мощный мультимодальный агент, сочетающий визуальное восприятие, речевое взаимодействие и пространственное мышление.

🔍 Расшифровка названия:
VLM-3R = Vision-Language Model for **R**easoning, **R**econstruction и **R**eal-world interaction

🎯 Основные возможности:
• Понимание и генерация изображений, видео и речи
• Работа в 3D-пространствах (реконструкция и навигация)
• Решение задач с реальным контекстом (например, манипуляции с объектами в симуляциях)
• Интерактивный агент с мультимодальной памятью и планированием

🚀 На чём построен:
• VLM-3R интегрирует крупные языковые и визуальные модели
• Использует mid-level представления для более точного понимания
• Работает с 2D и 3D сценами, распознаёт объекты, действия и голосовые команды

🔬 Применения:
• Робототехника
• Виртуальные ассистенты
• Интерактивные обучающие среды
• Моделирование поведения в симулированных мирах

📎 Подробнее: https://vlm-3r.github.io/
🧠 PKU-DS-LAB представили Fairy-R1 — мощную LLM-модели для математики и программирования, которая превосходит более крупные модели при меньшем числе параметров.

🚀 Что такое Fairy-R1:
• Это семейство языковых моделей, разработанных для задач математического и кодингового рассуждения
• Построены на базе DeepSeek-R1 с использованием метода distill-and-merge
• Выпущены две версии:
FairyR1-32B (32B параметров)
FairyR1-14B-Preview (14B параметров)

📊 Результаты на бенчмарках:
• AIME 2024: 80.4 (32B), 73.7 (14B)
• AIME 2025: 75.6 (32B), 64.9 (14B)
• LiveCodeBench: 67.7 (32B), 58.8 (14B)

📌 Почему это важно:
• Модели работают почти так же точно, как GPT-4, но в 20 раз легче
• Умеют обрабатывать задачи на английском и китайском
• Используют архитектуру слияния нескольких специализаций (AcreeFusion)

🛠 Как обучали:
• Математика: AIMO / NuminaMath-1.5
• Программирование: OpenThoughts-114k
• Обучение: на 32 × NVIDIA H100 (32B), 16 × H100 (14B)
• Доступ: полностью open-source (Apache 2.0)

🔗 https://huggingface.co/collections/PKU-DS-LAB/fairy-r1-6834014fe8fd45bc211c6dd7

@data_analysis_ml
Forwarded from Machinelearning
🌟 Hunyuan Video Avatar: видео-аватары с контролем эмоций.

Вслед за релизом Hunyuan Portrait, Tencent выпустила Hunyuan Video Avatar - систему на базе MM-DiT для генерации динамичных видео из изображения с одним или несколькими персонажами, синхронизированных с аудио.

Объединить такие возможности было непростой задачей, это стало возможным благодаря использованию ключевых для Hunyuan Video Avatar методов:

🟢Сharacter image injection module - отвечает за то, чтобы "оживший" персонаж на видео оставался очень похожим на того, кто был на исходной фотографии. Он следит, чтобы черты лица, прическа, общие контуры не искажались и персонаж был узнаваем на протяжении всего ролика, а его движения были естественными.

🟢Audio Emotion Module (AEM) - контролирует соответствие эмоций на лице голосу из аудиоисточника, чтобы выражение лица персонажа на видео точно совпадало с эмоциональной окраской звуковой дорожки.

🟢Face-Aware Audio Adapter (FAA) - помогает "понять", к какому именно лицу в данный момент относится звучащая речь. Он как бы надевает "умную маску" на лицо нужного персонажа, чтобы только его мимика оживала в ответ на конкретную аудиодорожку.

По сравнительных тестах с Sonic, EchoMimic, EchoMimicV2 и Hallo-3 на датасетах для портретной анимации (HDTF, CelebV-HQ и свой приватный сет) Hunyuan Video Avatar показал лучшие результаты: 3,99 в метриках качества видео (IQA), 2,54 по эстетике (ASE), 5,30 в синхронизации аудио и видео (Sync-C), 38.01 в точности воспроизведения видео (FID) и 358.71 по искажениям (FVD).

При тестировании полнокадровой анимации на собственном датасете HunyuanVideo-Avatar показал лучшие результаты по IQA (4.66), ASE (3.03) и Sync-C (5.56) в сравнении с Hallo3, FantasyTalking и OmniHuman-1.

⚠️ Модель прожорливая: минимум 24 ГБ VRAM для 704x768, а для плавного 4K рекомендуют GPU на 96 ГБ.

Зато входные изображения берет любые: фотореалистичные портреты, 3D-модели, аниме-персонажи — хоть лису в костюме. Разрешение тоже гибкое: от крупных планов до полноростовых.

▶️В репозитории проекта на Github есть несколько скриптов в помощь для запуска: для low VRAM, инференса на одном GPU , для multi-GPU и запуска с WebUI на базе Gradio. Адаптация к среде ComfyUI - в планах.


🟡Страница проекта
🟡Модели
🟡Arxiv
🟡Demo (китайский язык)
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #HunyuanAvatar
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🤖 best-of-robot-simulators: крупнейший рейтинг симуляторов для робототехники

Проект — это автоматизированная и регулярно обновляемая подборка лучших симуляторов для робототехники на GitHub. Это must-have для всех, кто работает с моделированием и тестированием роботов в виртуальной среде.

🧩 Что внутри:
● 120+ симуляторов в 10 категориях
● Более 300 000 звёзд в сумме
● Автоматическая сортировка по GitHub-метрикам: звёзды, форки, активность
● Обновляется каждую среду

📂 Категории симуляторов:
• Generic Robotics
• Aerial (дроны)
• Maritime (морская робототехника)
• Space
• Domain Specific
• Game engines
• AI-training
• Rendering
• Physics engines
• 2D Simulators

🔍 Примеры известных фреймворков:
• Gazebo, Webots, Isaac Sim, MuJoCo, AirSim, PyBullet

🛠 Полезно для:
• Разработчиков и исследователей
• Студентов робототехники
• Команд, выбирающих движок под проект
• Энтузиастов AI/симуляции

📎 Лицензия: CC-BY-SA 4.0

🌐 Репозиторий

#robotics #AI #simulation #opensource #gazebo #webots #isaacsim #mujoco
2025/05/28 19:32:40
Back to Top
HTML Embed Code: