DATA_ANALYSIS_ML Telegram 3695
🔍 Новые методы от Microsoft Research: прокачка рассуждения в LLM любого масштаба

Microsoft Research представила три ключевых стратегии для улучшения способностей ИИ к рассуждению — как в небольших, так и в больших моделях:

1️⃣ Архитектурные улучшения
Оптимизация слоёв и внимания особенно помогает малым языковым моделям (SLM), делая их рассуждение более последовательным.

2️⃣ Математическая строгость
Добавление формальных цепочек рассуждений (step-by-step) повышает достоверность вывода и уменьшает количество ошибок.

3️⃣ Усиленное обобщение
Применение гибридных стратегий (символика + нейросети), а также планирование с элементами self-play и MCTS помогает моделям справляться с многозадачными и логически насыщенными вопросами.

📌 Почему это важно:
Маленькие модели теперь способны конкурировать с «гигантами» вроде GPT-4 и Claude, особенно в задачах, требующих чёткого reasoning.
Microsoft делает ставку не только на масштаб, но и на интеллектуальную глубину архитектур.

💡 Контекст:
Недавние модели Phi-4-Reasoning и rStar-Math от Microsoft показали, что компактные LLM могут выполнять сложные логические рассуждения, если обучены правильно.

📈 Вывод:
Будущее — за «умными и компактными». Это значит:
• меньше ресурсов на инференс
• больше адаптивности
• лучшее внедрение в edge- и enterprise-сценарии

Время переосмыслить подход к архитектурам LLM. Не всегда больше — значит лучше.

📚 Подробнее в блоге Microsoft Research:
https://www.microsoft.com/en-us/research/blog/new-methods-boost-reasoning-in-small-and-large-language-models/

@data_analysis_ml
🔥74👍31



tgoop.com/data_analysis_ml/3695
Create:
Last Update:

🔍 Новые методы от Microsoft Research: прокачка рассуждения в LLM любого масштаба

Microsoft Research представила три ключевых стратегии для улучшения способностей ИИ к рассуждению — как в небольших, так и в больших моделях:

1️⃣ Архитектурные улучшения
Оптимизация слоёв и внимания особенно помогает малым языковым моделям (SLM), делая их рассуждение более последовательным.

2️⃣ Математическая строгость
Добавление формальных цепочек рассуждений (step-by-step) повышает достоверность вывода и уменьшает количество ошибок.

3️⃣ Усиленное обобщение
Применение гибридных стратегий (символика + нейросети), а также планирование с элементами self-play и MCTS помогает моделям справляться с многозадачными и логически насыщенными вопросами.

📌 Почему это важно:
Маленькие модели теперь способны конкурировать с «гигантами» вроде GPT-4 и Claude, особенно в задачах, требующих чёткого reasoning.
Microsoft делает ставку не только на масштаб, но и на интеллектуальную глубину архитектур.

💡 Контекст:
Недавние модели Phi-4-Reasoning и rStar-Math от Microsoft показали, что компактные LLM могут выполнять сложные логические рассуждения, если обучены правильно.

📈 Вывод:
Будущее — за «умными и компактными». Это значит:
• меньше ресурсов на инференс
• больше адаптивности
• лучшее внедрение в edge- и enterprise-сценарии

Время переосмыслить подход к архитектурам LLM. Не всегда больше — значит лучше.

📚 Подробнее в блоге Microsoft Research:
https://www.microsoft.com/en-us/research/blog/new-methods-boost-reasoning-in-small-and-large-language-models/

@data_analysis_ml

BY Анализ данных (Data analysis)




Share with your friend now:
tgoop.com/data_analysis_ml/3695

View MORE
Open in Telegram


Telegram News

Date: |

6How to manage your Telegram channel? Judge Hui described Ng as inciting others to “commit a massacre” with three posts teaching people to make “toxic chlorine gas bombs,” target police stations, police quarters and the city’s metro stations. This offence was “rather serious,” the court said. The optimal dimension of the avatar on Telegram is 512px by 512px, and it’s recommended to use PNG format to deliver an unpixelated avatar. End-to-end encryption is an important feature in messaging, as it's the first step in protecting users from surveillance. The imprisonment came as Telegram said it was "surprised" by claims that privacy commissioner Ada Chung Lai-ling is seeking to block the messaging app due to doxxing content targeting police and politicians.
from us


Telegram Анализ данных (Data analysis)
FROM American