🎥 Video-XL-2 — модель для понимании длинных видео
Многие модели хорошо справляются с бенчмарками, но начинают "захлёбываться", когда ролики становятся длиннее. Video-XL-2 создана, чтобы работать быстро и эффективно с длинными видео, не теряя в качестве.
🔑 Ключевые особенности:
• ⚡ Высокая скорость + низкое потребление памяти
• 🎯 SOTA-показатели среди open-source моделей с аналогичным размером
• 🔁 Поддержка до 10 000+ кадров на одной GPU
• 🧩 Инновации в архитектуре: chunk-based pre-filling и выборочное KV-декодирование
📊 Результаты на бенчмарках:
• MLVU — 74.9
• VideoMME — 66.4
• LVBench — 48.6
При этом модель использует меньше FLOPs, чем конкуренты, даже на больших входных данных — это говорит об отличной энергоэффективности.
🧪 Хорошо справляется с задачами:
– Понимание длинных видеороликов
– Поиск по видео
– Временная локализация событий (Temporal Grounding)
📎 Подробнее и демо
@data_analysis_ml
#AI #VideoUnderstanding #ML #LLM #Multimodal #BAAI
Многие модели хорошо справляются с бенчмарками, но начинают "захлёбываться", когда ролики становятся длиннее. Video-XL-2 создана, чтобы работать быстро и эффективно с длинными видео, не теряя в качестве.
🔑 Ключевые особенности:
• ⚡ Высокая скорость + низкое потребление памяти
• 🎯 SOTA-показатели среди open-source моделей с аналогичным размером
• 🔁 Поддержка до 10 000+ кадров на одной GPU
• 🧩 Инновации в архитектуре: chunk-based pre-filling и выборочное KV-декодирование
📊 Результаты на бенчмарках:
• MLVU — 74.9
• VideoMME — 66.4
• LVBench — 48.6
При этом модель использует меньше FLOPs, чем конкуренты, даже на больших входных данных — это говорит об отличной энергоэффективности.
🧪 Хорошо справляется с задачами:
– Понимание длинных видеороликов
– Поиск по видео
– Временная локализация событий (Temporal Grounding)
📎 Подробнее и демо
@data_analysis_ml
#AI #VideoUnderstanding #ML #LLM #Multimodal #BAAI
tgoop.com/data_analysis_ml/3620
Create:
Last Update:
Last Update:
🎥 Video-XL-2 — модель для понимании длинных видео
Многие модели хорошо справляются с бенчмарками, но начинают "захлёбываться", когда ролики становятся длиннее. Video-XL-2 создана, чтобы работать быстро и эффективно с длинными видео, не теряя в качестве.
🔑 Ключевые особенности:
• ⚡ Высокая скорость + низкое потребление памяти
• 🎯 SOTA-показатели среди open-source моделей с аналогичным размером
• 🔁 Поддержка до 10 000+ кадров на одной GPU
• 🧩 Инновации в архитектуре: chunk-based pre-filling и выборочное KV-декодирование
📊 Результаты на бенчмарках:
• MLVU — 74.9
• VideoMME — 66.4
• LVBench — 48.6
При этом модель использует меньше FLOPs, чем конкуренты, даже на больших входных данных — это говорит об отличной энергоэффективности.
🧪 Хорошо справляется с задачами:
– Понимание длинных видеороликов
– Поиск по видео
– Временная локализация событий (Temporal Grounding)
📎 Подробнее и демо
@data_analysis_ml
#AI #VideoUnderstanding #ML #LLM #Multimodal #BAAI
Многие модели хорошо справляются с бенчмарками, но начинают "захлёбываться", когда ролики становятся длиннее. Video-XL-2 создана, чтобы работать быстро и эффективно с длинными видео, не теряя в качестве.
🔑 Ключевые особенности:
• ⚡ Высокая скорость + низкое потребление памяти
• 🎯 SOTA-показатели среди open-source моделей с аналогичным размером
• 🔁 Поддержка до 10 000+ кадров на одной GPU
• 🧩 Инновации в архитектуре: chunk-based pre-filling и выборочное KV-декодирование
📊 Результаты на бенчмарках:
• MLVU — 74.9
• VideoMME — 66.4
• LVBench — 48.6
При этом модель использует меньше FLOPs, чем конкуренты, даже на больших входных данных — это говорит об отличной энергоэффективности.
🧪 Хорошо справляется с задачами:
– Понимание длинных видеороликов
– Поиск по видео
– Временная локализация событий (Temporal Grounding)
📎 Подробнее и демо
@data_analysis_ml
#AI #VideoUnderstanding #ML #LLM #Multimodal #BAAI
BY Анализ данных (Data analysis)






Share with your friend now:
tgoop.com/data_analysis_ml/3620