tgoop.com/data_analysis_ml/3612
Last Update:
🔁 BERT перезагружается — революция в обработке языка
Когда-то BERT (Bidirectional Encoder Representations from Transformers) стал поворотной точкой в NLP. Это была первая модель, которая обучалась трансформеру двунаправленно — она одновременно учитывала контекст и слева, и справа от каждого слова, чтобы понимать язык глубже, чем когда-либо.
🧠 Что изменил BERT:
• Принёс в трансформеры стратегию «предобучение → дообучение»
• Учил модели понимать текст без ручной разметки
• Доказал, что язык можно моделировать через простые, но мощные задачи
🛠 Как устроено предобучение BERT:
🔹 MLM (Masked Language Model)
Модель случайно скрывает 15% слов в предложении и учится угадывать их, основываясь на окружающем контексте.
Примерно как человек, который понимает фразу, даже если не видит пару слов.
🔹 NSP (Next Sentence Prediction)
BERT также обучался распознавать, действительно ли второе предложение логически следует за первым.
Но…
⚡ Современные версии (NeoBERT, ModernBERT) отказываются от NSP — вместо него они используют более быстрые и эффективные подходы, чтобы добиться лучшей производительности.
🔍 Хотите узнать больше о BERT, его развитии и новой модели ConstBERT для поисковых задач?
👉 Читайте разбор здесь: https://turingpost.com/p/bert
BY Анализ данных (Data analysis)

Share with your friend now:
tgoop.com/data_analysis_ml/3612