DATA_ANALYSIS_ML Telegram 3475
🥇 VL-Rethinker — новую парадигму мультимодального вывода, обучаемую напрямую с помощью Reinforcement Learning.

🌟 Новая SOTA на ключевых бенчмарках по vision + math:

🟢 MathVista: 80.3 → 🥇 (+6.4 vs GPT-o1 73.9)
🟢 MathVerse: 61.7 → 🥇 (+4.7 vs GPT-o1 57.0)
🟢 MathVision: 43.9 → 🥇 (+1.7 vs GPT-o1 42.2)

🔥 В чём секрет? GRPO-алгоритм с двумя ключевыми новшествами:

🟠Этап 1: Улучшение логики, с помощью GRPO + SSR (Selective Sample Replay):

Сохраняются только те последовательности действий модели (rollouts), которые дали ненулевое преимущество (advantage).

При повторном обучении приоритет отдается полезным примерам, что помогает стабилизировать обучение.

Почему это важно?
При обычном GRPO-со временем "advantage" может становиться нулевым → градиенты обнуляются → модель перестаёт учиться. SSR решает эту проблему.

🟠 Этап 2: Вынужденное «переосмысление» (Forced Rethinking)
На этом этапе в каждый rollout добавляется специальный триггер, заставляющий модель заново обдумывать ответ, прежде чем его выдать.

Это развивает способность к саморефлексии, улучшает многошаговое рассуждение и точность ответов.

🔥 Модель вынуждена подумать ещё раз перед финальным ответом.
Результат — у модели появляются признаки метапознания: она сама находит ошибки в начальных размышлениях.

✔️ VL-Rethinker-72B — первый VLM, обгоняющий GPT-o1.

Похоже, что будущее за "медленно думающими" и умеющими рефлексировать агентами.

🔜 Paper
🔜 Code
🔜 Website
Please open Telegram to view this post
VIEW IN TELEGRAM
👍94🔥1



tgoop.com/data_analysis_ml/3475
Create:
Last Update:

🥇 VL-Rethinker — новую парадигму мультимодального вывода, обучаемую напрямую с помощью Reinforcement Learning.

🌟 Новая SOTA на ключевых бенчмарках по vision + math:

🟢 MathVista: 80.3 → 🥇 (+6.4 vs GPT-o1 73.9)
🟢 MathVerse: 61.7 → 🥇 (+4.7 vs GPT-o1 57.0)
🟢 MathVision: 43.9 → 🥇 (+1.7 vs GPT-o1 42.2)

🔥 В чём секрет? GRPO-алгоритм с двумя ключевыми новшествами:

🟠Этап 1: Улучшение логики, с помощью GRPO + SSR (Selective Sample Replay):

Сохраняются только те последовательности действий модели (rollouts), которые дали ненулевое преимущество (advantage).

При повторном обучении приоритет отдается полезным примерам, что помогает стабилизировать обучение.

Почему это важно?
При обычном GRPO-со временем "advantage" может становиться нулевым → градиенты обнуляются → модель перестаёт учиться. SSR решает эту проблему.

🟠 Этап 2: Вынужденное «переосмысление» (Forced Rethinking)
На этом этапе в каждый rollout добавляется специальный триггер, заставляющий модель заново обдумывать ответ, прежде чем его выдать.

Это развивает способность к саморефлексии, улучшает многошаговое рассуждение и точность ответов.

🔥 Модель вынуждена подумать ещё раз перед финальным ответом.
Результат — у модели появляются признаки метапознания: она сама находит ошибки в начальных размышлениях.

✔️ VL-Rethinker-72B — первый VLM, обгоняющий GPT-o1.

Похоже, что будущее за "медленно думающими" и умеющими рефлексировать агентами.

🔜 Paper
🔜 Code
🔜 Website

BY Анализ данных (Data analysis)






Share with your friend now:
tgoop.com/data_analysis_ml/3475

View MORE
Open in Telegram


Telegram News

Date: |

5Telegram Channel avatar size/dimensions The public channel had more than 109,000 subscribers, Judge Hui said. Ng had the power to remove or amend the messages in the channel, but he “allowed them to exist.” 3How to create a Telegram channel? ‘Ban’ on Telegram The group also hosted discussions on committing arson, Judge Hui said, including setting roadblocks on fire, hurling petrol bombs at police stations and teaching people to make such weapons. The conversation linked to arson went on for two to three months, Hui said.
from us


Telegram Анализ данных (Data analysis)
FROM American