DATA_ANALYSIS_ML Telegram 3446
Forwarded from Machinelearning
🌟 Kimi-VL: VLM с MoE, ризонингом и контекстом 128K.

Moonshot AI опубликовала веса Kimi-VL — открытой VLM, которая объединяет обработку текста, изображений и видео. Благодаря архитектуре MoE модель активирует всего 2.8 млрд. параметров в языковом декодере, обеспечивая скорость, сопоставимую с компактными аналогами, и результативность флагманских решений.

Главное преимущество Kimi-VL — способность анализировать длинные контексты до 128 тыс. токенов, что делает её идеальной для работы с объемными документами, длинными видео или сложными мультимедийными задачами.

Основу модели составляет визуальный энкодер MoonViT, оптимизированный для нативной обработки изображений любого разрешения без необходимости разбивать их на части. Это позволяет точно распознавать текст, графики или UI-интерфейсы даже в высокодетализированных скриншотах.

Например, на бенчмарке InfoVQA модель показывает точность 83.2%, обходя даже GPT-4o. В задачах OCR Kimi-VL достигает 86.7% на OCRBench, что ставит её в ряд лучших в индустрии.

Разработчики также представили Kimi-VL-Thinking — версию с расширенными возможностями CoT. Благодаря использованным RL и длительному CoT-тюнингу она демонстрирует впечатляющие результаты в математических и академических задачах: на MathVista точность составила 71.3%, а на MMMU — до 61.7%, что лучше, чем у Gemma-3-12B-IT.

В тестах Kimi-VL превосходит конкурентов в работе с агентами: на OSWorld её результат 8.22% выше, чем у GPT-4o (5.03%), а на WindowsAgentArena — 10.4%. Для длинных видео модель набирает 64.5% на LongVideoBench, подтверждая способность анализировать часовые записи без потери ключевых деталей.

Модели доступны на Hugging Face в двух вариантах:

🟢Kimi-VL-A3B-Instruct для стандартных задач;

🟠Kimi-VL-Thinking для сложных рассуждений.

▶️ Инференс через Transformers занимает несколько строк кода — достаточно загрузить изображение, задать запрос и получить подробный ответ.


📌Лицензирование: MIT License.


🟡Набор моделей
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #VLM #KimiAI #MoonShotAI
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍6🔥1



tgoop.com/data_analysis_ml/3446
Create:
Last Update:

🌟 Kimi-VL: VLM с MoE, ризонингом и контекстом 128K.

Moonshot AI опубликовала веса Kimi-VL — открытой VLM, которая объединяет обработку текста, изображений и видео. Благодаря архитектуре MoE модель активирует всего 2.8 млрд. параметров в языковом декодере, обеспечивая скорость, сопоставимую с компактными аналогами, и результативность флагманских решений.

Главное преимущество Kimi-VL — способность анализировать длинные контексты до 128 тыс. токенов, что делает её идеальной для работы с объемными документами, длинными видео или сложными мультимедийными задачами.

Основу модели составляет визуальный энкодер MoonViT, оптимизированный для нативной обработки изображений любого разрешения без необходимости разбивать их на части. Это позволяет точно распознавать текст, графики или UI-интерфейсы даже в высокодетализированных скриншотах.

Например, на бенчмарке InfoVQA модель показывает точность 83.2%, обходя даже GPT-4o. В задачах OCR Kimi-VL достигает 86.7% на OCRBench, что ставит её в ряд лучших в индустрии.

Разработчики также представили Kimi-VL-Thinking — версию с расширенными возможностями CoT. Благодаря использованным RL и длительному CoT-тюнингу она демонстрирует впечатляющие результаты в математических и академических задачах: на MathVista точность составила 71.3%, а на MMMU — до 61.7%, что лучше, чем у Gemma-3-12B-IT.

В тестах Kimi-VL превосходит конкурентов в работе с агентами: на OSWorld её результат 8.22% выше, чем у GPT-4o (5.03%), а на WindowsAgentArena — 10.4%. Для длинных видео модель набирает 64.5% на LongVideoBench, подтверждая способность анализировать часовые записи без потери ключевых деталей.

Модели доступны на Hugging Face в двух вариантах:

🟢Kimi-VL-A3B-Instruct для стандартных задач;

🟠Kimi-VL-Thinking для сложных рассуждений.

▶️ Инференс через Transformers занимает несколько строк кода — достаточно загрузить изображение, задать запрос и получить подробный ответ.


📌Лицензирование: MIT License.


🟡Набор моделей
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #VLM #KimiAI #MoonShotAI

BY Анализ данных (Data analysis)







Share with your friend now:
tgoop.com/data_analysis_ml/3446

View MORE
Open in Telegram


Telegram News

Date: |

How to Create a Private or Public Channel on Telegram? SUCK Channel Telegram When choosing the right name for your Telegram channel, use the language of your target audience. The name must sum up the essence of your channel in 1-3 words. If you’re planning to expand your Telegram audience, it makes sense to incorporate keywords into your name. Ng Man-ho, a 27-year-old computer technician, was convicted last month of seven counts of incitement charges after he made use of the 100,000-member Chinese-language channel that he runs and manages to post "seditious messages," which had been shut down since August 2020. A new window will come up. Enter your channel name and bio. (See the character limits above.) Click “Create.”
from us


Telegram Анализ данных (Data analysis)
FROM American