Warning: file_put_contents(aCache/aDaily/post/data_analysis_ml/-3430-3431-3430-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Анализ данных (Data analysis)@data_analysis_ml P.3431
DATA_ANALYSIS_ML Telegram 3431
Forwarded from Machinelearning
📌 SPCT: масштабируемость моделей вознаграждения в реальном времени.

DeepSeek-AI и Университет Цинхуа опубликовали исследование о методе Self-Principled Critique Tuning (SPCT), который значительно повышает эффективность генеративных моделей вознаграждения (GRM) для больших языковых моделей. SPCT решает ключевую проблему RL-обучения — получение точных сигналов вознаграждения в условиях разных и неоднозначных задач, где нет четких правил или эталонов.

SPCT — это комбинация rejective fine-tuning и обучения с подкреплением на основе правил. Rejective fine-tuning учит модель генерировать принципы и критические оценки, адаптируясь к разным типам входных данных, а rule-based RL — оптимизирует процесс через систему поощрений, которая штрафует за ошибки в ранжировании ответов.

Это позволяет GRM самостоятельно создавать критерии оценки и точнее определять лучшие ответы в сложных сценариях, например, при работе с математическими задачами или этическими дилеммами.

Главное преимущество SPCT — масштабируемость инференса. Вместо увеличения размера модели авторы предлагают параллельно генерировать множество вариантов принципов и оценок, а затем агрегировать их через голосование. Чтобы фильтровать «шумные» варианты используется мета-модель вознаграждения, которая отбирает только качественные сэмплы.

По результатам тестов, DeepSeek-GRM с 27 млрд. параметров при 32 параллельных сэмплах превзошла 671B модель, демонстрируя, что вычислительные ресурсы можно эффективно распределять во время инференса, а не обучения.

Эксперименты на бенчмарках Reward Bench, PPE и RMB показали, что SPCT снижает предвзятость моделей. Например, в задачах на рассуждение точность выросла на 12%, а в оценке безопасности — на 9%. При этом метод сохраняет гибкость: одна и та же модель может оценивать одиночные ответы, пары или целые наборы, что критично для реальных приложений вроде чат-ботов или автономных систем.

К сожалению, идеальных решений не бывает и у метода есть существенное ограничение - GRM требуют больше вычислительных ресурсов, чем классические скалярные модели, а в узкоспециализированных областях (например, верификация кода) их точность пока уступает конкурентам.


🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #LLM #GRM #DeepSeekAI
Please open Telegram to view this post
VIEW IN TELEGRAM
👍94🔥2



tgoop.com/data_analysis_ml/3431
Create:
Last Update:

📌 SPCT: масштабируемость моделей вознаграждения в реальном времени.

DeepSeek-AI и Университет Цинхуа опубликовали исследование о методе Self-Principled Critique Tuning (SPCT), который значительно повышает эффективность генеративных моделей вознаграждения (GRM) для больших языковых моделей. SPCT решает ключевую проблему RL-обучения — получение точных сигналов вознаграждения в условиях разных и неоднозначных задач, где нет четких правил или эталонов.

SPCT — это комбинация rejective fine-tuning и обучения с подкреплением на основе правил. Rejective fine-tuning учит модель генерировать принципы и критические оценки, адаптируясь к разным типам входных данных, а rule-based RL — оптимизирует процесс через систему поощрений, которая штрафует за ошибки в ранжировании ответов.

Это позволяет GRM самостоятельно создавать критерии оценки и точнее определять лучшие ответы в сложных сценариях, например, при работе с математическими задачами или этическими дилеммами.

Главное преимущество SPCT — масштабируемость инференса. Вместо увеличения размера модели авторы предлагают параллельно генерировать множество вариантов принципов и оценок, а затем агрегировать их через голосование. Чтобы фильтровать «шумные» варианты используется мета-модель вознаграждения, которая отбирает только качественные сэмплы.

По результатам тестов, DeepSeek-GRM с 27 млрд. параметров при 32 параллельных сэмплах превзошла 671B модель, демонстрируя, что вычислительные ресурсы можно эффективно распределять во время инференса, а не обучения.

Эксперименты на бенчмарках Reward Bench, PPE и RMB показали, что SPCT снижает предвзятость моделей. Например, в задачах на рассуждение точность выросла на 12%, а в оценке безопасности — на 9%. При этом метод сохраняет гибкость: одна и та же модель может оценивать одиночные ответы, пары или целые наборы, что критично для реальных приложений вроде чат-ботов или автономных систем.

К сожалению, идеальных решений не бывает и у метода есть существенное ограничение - GRM требуют больше вычислительных ресурсов, чем классические скалярные модели, а в узкоспециализированных областях (например, верификация кода) их точность пока уступает конкурентам.


🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #LLM #GRM #DeepSeekAI

BY Анализ данных (Data analysis)





Share with your friend now:
tgoop.com/data_analysis_ml/3431

View MORE
Open in Telegram


Telegram News

Date: |

With Bitcoin down 30% in the past week, some crypto traders have taken to Telegram to “voice” their feelings. Hashtags are a fast way to find the correct information on social media. To put your content out there, be sure to add hashtags to each post. We have two intelligent tips to give you: The group also hosted discussions on committing arson, Judge Hui said, including setting roadblocks on fire, hurling petrol bombs at police stations and teaching people to make such weapons. The conversation linked to arson went on for two to three months, Hui said. The public channel had more than 109,000 subscribers, Judge Hui said. Ng had the power to remove or amend the messages in the channel, but he “allowed them to exist.” Some Telegram Channels content management tips
from us


Telegram Анализ данных (Data analysis)
FROM American