Warning: file_put_contents(aCache/aDaily/post/bigdatai/-1204-1205-1206-1207-1204-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Big Data AI@bigdatai P.1207
BIGDATAI Telegram 1207
Forwarded from Machinelearning
⚡️ Обновление семейства Nemotron: теперь с ризонингом.

NVIDIA выпустила новые модели и датасет семейства Nemotron :

🟢Модель Llama-3.3-Nemotron-Super-49B-v1

🟢Модель Llama-3.1-Nemotron-Nano-8B-v1

🟠Датасет Llama-Nemotron-Post-Training-Dataset-v1

▶️Llama-3.3-Nemotron-Super-49B-v1 — флагманская мультиязычная модель, созданная на базе Llama-3.3-70B-Instruct и оптимизированная для ризонинга, чат-взаимодействий и RAG-систем, с контекстным окном 128 тыс. токенов. Ключевая особенность — применение в процессе создания Neural Architecture Search (NAS), метода, который позволил сократить вычислительные затраты без значительной потери качества.

Архитектура модели, впервые для семейства Nemotron, использует нестандартные блоки: в части слоев внимание заменено линейными преобразованиями, а параметры FFN-слоев варьируются между блоками. Это позволило адаптировать модель для работы на одном GPU H100-80GB.

Обучение проходило в несколько этапов: от дистилляции знаний на 40 млрд. токенов до тонкой настройки с RL-алгоритмами (RPO и REINFORCE).

Результаты тестов впечатляют: в режиме «рассуждений» модель демонстрирует 96,6% pass@1 на MATH500 и 58,4% на AIME25, превосходя базовые показатели.

Модель умеет переключаться между ризонинг-режимом и типовым LLM-инференсом: для режима рассуждений рекомендуется свой системный промпт и параметры t=0,6 и Top-P=0,95.

Модель ориентирована на создание ИИ-агентов, чат-ботов, систем с расширенным контекстом и доступна через API, в веб-демо на NVIDIA Build и веса для скачивания на HuggingFace.

▶️Llama-3.1-Nemotron-Nano-8B-v1 - младшая модель с 8 млрд. параметров, которая предлагает компромисс между точностью и эффективностью. Она создана на основе Llama 3.1 8B Instruct и предлагает улучшение точности базовой Llama 3.1, возможности в рассуждениях, как и флагманская. Модель подходит для запуска на одном GPU RTX и может использоваться локально. Nano-8B-v1 поддерживает длину контекста 128 тыс. токенов.

▶️Llama-Nemotron-Post-Training-Dataset-v1 - набор данных объемом 15.2 млн строк, который представляет собой компиляцию данных SFT и RL для улучшения математических, кодовых, общих рассуждений и возможностей следования инструкциям оригинальной модели Llama.


📌Лицензирование: NVIDIA Open Model License


🟡Статья
🟡Коллекция Nemotron на HF
🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #LLM #NVIDIA #Nemotron
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2🥰1



tgoop.com/bigdatai/1207
Create:
Last Update:

⚡️ Обновление семейства Nemotron: теперь с ризонингом.

NVIDIA выпустила новые модели и датасет семейства Nemotron :

🟢Модель Llama-3.3-Nemotron-Super-49B-v1

🟢Модель Llama-3.1-Nemotron-Nano-8B-v1

🟠Датасет Llama-Nemotron-Post-Training-Dataset-v1

▶️Llama-3.3-Nemotron-Super-49B-v1 — флагманская мультиязычная модель, созданная на базе Llama-3.3-70B-Instruct и оптимизированная для ризонинга, чат-взаимодействий и RAG-систем, с контекстным окном 128 тыс. токенов. Ключевая особенность — применение в процессе создания Neural Architecture Search (NAS), метода, который позволил сократить вычислительные затраты без значительной потери качества.

Архитектура модели, впервые для семейства Nemotron, использует нестандартные блоки: в части слоев внимание заменено линейными преобразованиями, а параметры FFN-слоев варьируются между блоками. Это позволило адаптировать модель для работы на одном GPU H100-80GB.

Обучение проходило в несколько этапов: от дистилляции знаний на 40 млрд. токенов до тонкой настройки с RL-алгоритмами (RPO и REINFORCE).

Результаты тестов впечатляют: в режиме «рассуждений» модель демонстрирует 96,6% pass@1 на MATH500 и 58,4% на AIME25, превосходя базовые показатели.

Модель умеет переключаться между ризонинг-режимом и типовым LLM-инференсом: для режима рассуждений рекомендуется свой системный промпт и параметры t=0,6 и Top-P=0,95.

Модель ориентирована на создание ИИ-агентов, чат-ботов, систем с расширенным контекстом и доступна через API, в веб-демо на NVIDIA Build и веса для скачивания на HuggingFace.

▶️Llama-3.1-Nemotron-Nano-8B-v1 - младшая модель с 8 млрд. параметров, которая предлагает компромисс между точностью и эффективностью. Она создана на основе Llama 3.1 8B Instruct и предлагает улучшение точности базовой Llama 3.1, возможности в рассуждениях, как и флагманская. Модель подходит для запуска на одном GPU RTX и может использоваться локально. Nano-8B-v1 поддерживает длину контекста 128 тыс. токенов.

▶️Llama-Nemotron-Post-Training-Dataset-v1 - набор данных объемом 15.2 млн строк, который представляет собой компиляцию данных SFT и RL для улучшения математических, кодовых, общих рассуждений и возможностей следования инструкциям оригинальной модели Llama.


📌Лицензирование: NVIDIA Open Model License


🟡Статья
🟡Коллекция Nemotron на HF
🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #LLM #NVIDIA #Nemotron

BY Big Data AI







Share with your friend now:
tgoop.com/bigdatai/1207

View MORE
Open in Telegram


Telegram News

Date: |

Ng was convicted in April for conspiracy to incite a riot, public nuisance, arson, criminal damage, manufacturing of explosives, administering poison and wounding with intent to do grievous bodily harm between October 2019 and June 2020. Ng, who had pleaded not guilty to all charges, had been detained for more than 20 months. His channel was said to have contained around 120 messages and photos that incited others to vandalise pro-government shops and commit criminal damage targeting police stations. Just as the Bitcoin turmoil continues, crypto traders have taken to Telegram to voice their feelings. Crypto investors can reduce their anxiety about losses by joining the “Bear Market Screaming Therapy Group” on Telegram. “[The defendant] could not shift his criminal liability,” Hui said. Healing through screaming therapy
from us


Telegram Big Data AI
FROM American