BIGDATAI Telegram 1206
Forwarded from Machinelearning
⚡️ Обновление семейства Nemotron: теперь с ризонингом.

NVIDIA выпустила новые модели и датасет семейства Nemotron :

🟢Модель Llama-3.3-Nemotron-Super-49B-v1

🟢Модель Llama-3.1-Nemotron-Nano-8B-v1

🟠Датасет Llama-Nemotron-Post-Training-Dataset-v1

▶️Llama-3.3-Nemotron-Super-49B-v1 — флагманская мультиязычная модель, созданная на базе Llama-3.3-70B-Instruct и оптимизированная для ризонинга, чат-взаимодействий и RAG-систем, с контекстным окном 128 тыс. токенов. Ключевая особенность — применение в процессе создания Neural Architecture Search (NAS), метода, который позволил сократить вычислительные затраты без значительной потери качества.

Архитектура модели, впервые для семейства Nemotron, использует нестандартные блоки: в части слоев внимание заменено линейными преобразованиями, а параметры FFN-слоев варьируются между блоками. Это позволило адаптировать модель для работы на одном GPU H100-80GB.

Обучение проходило в несколько этапов: от дистилляции знаний на 40 млрд. токенов до тонкой настройки с RL-алгоритмами (RPO и REINFORCE).

Результаты тестов впечатляют: в режиме «рассуждений» модель демонстрирует 96,6% pass@1 на MATH500 и 58,4% на AIME25, превосходя базовые показатели.

Модель умеет переключаться между ризонинг-режимом и типовым LLM-инференсом: для режима рассуждений рекомендуется свой системный промпт и параметры t=0,6 и Top-P=0,95.

Модель ориентирована на создание ИИ-агентов, чат-ботов, систем с расширенным контекстом и доступна через API, в веб-демо на NVIDIA Build и веса для скачивания на HuggingFace.

▶️Llama-3.1-Nemotron-Nano-8B-v1 - младшая модель с 8 млрд. параметров, которая предлагает компромисс между точностью и эффективностью. Она создана на основе Llama 3.1 8B Instruct и предлагает улучшение точности базовой Llama 3.1, возможности в рассуждениях, как и флагманская. Модель подходит для запуска на одном GPU RTX и может использоваться локально. Nano-8B-v1 поддерживает длину контекста 128 тыс. токенов.

▶️Llama-Nemotron-Post-Training-Dataset-v1 - набор данных объемом 15.2 млн строк, который представляет собой компиляцию данных SFT и RL для улучшения математических, кодовых, общих рассуждений и возможностей следования инструкциям оригинальной модели Llama.


📌Лицензирование: NVIDIA Open Model License


🟡Статья
🟡Коллекция Nemotron на HF
🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #LLM #NVIDIA #Nemotron
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2🥰1



tgoop.com/bigdatai/1206
Create:
Last Update:

⚡️ Обновление семейства Nemotron: теперь с ризонингом.

NVIDIA выпустила новые модели и датасет семейства Nemotron :

🟢Модель Llama-3.3-Nemotron-Super-49B-v1

🟢Модель Llama-3.1-Nemotron-Nano-8B-v1

🟠Датасет Llama-Nemotron-Post-Training-Dataset-v1

▶️Llama-3.3-Nemotron-Super-49B-v1 — флагманская мультиязычная модель, созданная на базе Llama-3.3-70B-Instruct и оптимизированная для ризонинга, чат-взаимодействий и RAG-систем, с контекстным окном 128 тыс. токенов. Ключевая особенность — применение в процессе создания Neural Architecture Search (NAS), метода, который позволил сократить вычислительные затраты без значительной потери качества.

Архитектура модели, впервые для семейства Nemotron, использует нестандартные блоки: в части слоев внимание заменено линейными преобразованиями, а параметры FFN-слоев варьируются между блоками. Это позволило адаптировать модель для работы на одном GPU H100-80GB.

Обучение проходило в несколько этапов: от дистилляции знаний на 40 млрд. токенов до тонкой настройки с RL-алгоритмами (RPO и REINFORCE).

Результаты тестов впечатляют: в режиме «рассуждений» модель демонстрирует 96,6% pass@1 на MATH500 и 58,4% на AIME25, превосходя базовые показатели.

Модель умеет переключаться между ризонинг-режимом и типовым LLM-инференсом: для режима рассуждений рекомендуется свой системный промпт и параметры t=0,6 и Top-P=0,95.

Модель ориентирована на создание ИИ-агентов, чат-ботов, систем с расширенным контекстом и доступна через API, в веб-демо на NVIDIA Build и веса для скачивания на HuggingFace.

▶️Llama-3.1-Nemotron-Nano-8B-v1 - младшая модель с 8 млрд. параметров, которая предлагает компромисс между точностью и эффективностью. Она создана на основе Llama 3.1 8B Instruct и предлагает улучшение точности базовой Llama 3.1, возможности в рассуждениях, как и флагманская. Модель подходит для запуска на одном GPU RTX и может использоваться локально. Nano-8B-v1 поддерживает длину контекста 128 тыс. токенов.

▶️Llama-Nemotron-Post-Training-Dataset-v1 - набор данных объемом 15.2 млн строк, который представляет собой компиляцию данных SFT и RL для улучшения математических, кодовых, общих рассуждений и возможностей следования инструкциям оригинальной модели Llama.


📌Лицензирование: NVIDIA Open Model License


🟡Статья
🟡Коллекция Nemotron на HF
🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #LLM #NVIDIA #Nemotron

BY Big Data AI







Share with your friend now:
tgoop.com/bigdatai/1206

View MORE
Open in Telegram


Telegram News

Date: |

How to Create a Private or Public Channel on Telegram? Other crimes that the SUCK Channel incited under Ng’s watch included using corrosive chemicals to make explosives and causing grievous bodily harm with intent. The court also found Ng responsible for calling on people to assist protesters who clashed violently with police at several universities in November 2019. So far, more than a dozen different members have contributed to the group, posting voice notes of themselves screaming, yelling, groaning, and wailing in various pitches and rhythms. 4How to customize a Telegram channel? It’s easy to create a Telegram channel via desktop app or mobile app (for Android and iOS):
from us


Telegram Big Data AI
FROM American