tgoop.com/bigdata_1/993
Last Update:
🎯RecSys R&D команда из Яндекса разработали рекомендательные системы нового поколения на базе больших генеративных нейросетей.
В то время как индустрия пристально следит за успехами LLM, в другой ключевой сфере — рекомендательных системах — случился важный апдейт. Исследователи Яндекса разработали и внедрили в свои сервисы новую трансформерную модель ARGUS (AutoRegressive Generative User Sequential Modeling), способную буквально «читать» поведение пользователя.
Алгоритмы учитывают сложные последовательности (включая мельчайшие фидбеки), предсказывают большое количество обезличенных действий и точнее понимают реакцию и вкусы пользователей. Особенно актуально в эпоху, когда рекомендательные системы становятся фундаментом современных сервисов, а контента становится слишком много.
На Хабре подробно описано, как команда масштабировала систему. Выделили 3 главных условия нейросетевого масштабирования: должен быть огромный массив данных, выразительная архитектура с большой емкостью модели и фундаментальная задача обучения.
В Яндекс Музыке генеративные нейросети в рекомендациях используются уже с 2023. Она же стала первым сервисом, в который интегрировали новые модели и перевели их в онлайн. В результате: пользователи стали ставить на 20% больше лайков, а разнообразие рекомендаций выросло. В Яндекс Маркете внедрение новых алгоритмов позволило учитывать в несколько раз больше обезличенного контекста о пользовательском поведении на сервисе — это эквивалентно примерно двум годам активности покупателей. Рекомендации позволяют чаще встречать интересные товары, и учитывают сезонность. Если, например, прошлым летом пользователь интересовался футболом, то в этот сезон система посоветуем ему мячи или спортивную униформу. В будущем апдейт получат и другие сервисы компании.
BY BigData

Share with your friend now:
tgoop.com/bigdata_1/993