This media is not supported in your browser
VIEW IN TELEGRAM
Создаем собственного AI-помощника для кодинга в JupyterLab с использованием Ollama и Hugging Face
Недавно я исследовал возможности создания собственного AI-помощника для написания кода. Цель — иметь полноценного помощника, работающего локально, без зависимости от облака и внешних API.
Вот как я это сделал:
🧠 Что такое Ollama?
Ollama — это инструмент для локального запуска LLM (Large Language Models). Он поддерживает модели вроде
Пример установки и запуска:
После запуска вы можете взаимодействовать с моделью через CLI или REST API.
🤖 Интерфейс с JupyterLab
Теперь объединим Ollama с JupyterLab, чтобы создать AI-помощника, с которым можно взаимодействовать прямо в ноутбуке.
Установка расширения:
Устанавливаем
Настройка Ollama в Jupyter AI
Файл
Теперь ваш JupyterLab знает, куда отправлять запросы.
🚀 Использование в Jupyter
Теперь можно использовать магические команды:
Или вызвать помощника в чате справа от ноутбука.
🧩 Альтернатива: Hugging Face + Text Generation Inference
Если вы хотите использовать модели из Hugging Face — можно установить
Команда запуска:
В конфиге JupyterAI:
💡 Итоги
Теперь у вас есть полностью локальный AI-кодинг помощник, работающий в JupyterLab, без отправки данных в облако. Отличное решение для конфиденциальной работы, кастомизации и обучения.
https://towardsdatascience.com/build-your-own-ai-coding-assistant-in-jupyterlab-with-ollama-and-hugging-face/
👉 @bigdata_1
Недавно я исследовал возможности создания собственного AI-помощника для написания кода. Цель — иметь полноценного помощника, работающего локально, без зависимости от облака и внешних API.
Вот как я это сделал:
🧠 Что такое Ollama?
Ollama — это инструмент для локального запуска LLM (Large Language Models). Он поддерживает модели вроде
codellama
, llama2
, mistral
и другие. Всё работает на вашем компьютере, без необходимости обращаться к внешним сервисам.Пример установки и запуска:
curl -fsSL https://ollama.com/install.sh | sh
ollama run codellama
После запуска вы можете взаимодействовать с моделью через CLI или REST API.
🤖 Интерфейс с JupyterLab
Теперь объединим Ollama с JupyterLab, чтобы создать AI-помощника, с которым можно взаимодействовать прямо в ноутбуке.
Установка расширения:
Устанавливаем
jupyter-ai
, который интегрируется с LLM в Jupyter:
pip install jupyter-ai
jupyter labextension install @jupyterlab/ai-extension
jupyter ai init
Настройка Ollama в Jupyter AI
Файл
jupyter_ai_config.toml
:
[jupyter_ai]
default_provider = "ollama"
[jupyter_ai.providers.ollama]
url = "http://localhost:11434"
model = "codellama"
Теперь ваш JupyterLab знает, куда отправлять запросы.
🚀 Использование в Jupyter
Теперь можно использовать магические команды:
%%ai
Напиши функцию на Python, которая сортирует список по возрастанию.
Или вызвать помощника в чате справа от ноутбука.
🧩 Альтернатива: Hugging Face + Text Generation Inference
Если вы хотите использовать модели из Hugging Face — можно установить
text-generation-inference
, который поддерживает множество моделей, оптимизированных для inference.Команда запуска:
docker run --gpus all -p 8080:80 ghcr.io/huggingface/text-generation-inference \
--model-id bigcode/starcoder2 \
--quantize gptq
В конфиге JupyterAI:
[jupyter_ai.providers.huggingface_tgi]
url = "http://localhost:8080"
model = "bigcode/starcoder2"
💡 Итоги
Теперь у вас есть полностью локальный AI-кодинг помощник, работающий в JupyterLab, без отправки данных в облако. Отличное решение для конфиденциальной работы, кастомизации и обучения.
https://towardsdatascience.com/build-your-own-ai-coding-assistant-in-jupyterlab-with-ollama-and-hugging-face/
👉 @bigdata_1
OpenCharacter: обучение настраиваемых LLM для ролевого взаимодействия с использованием масштабных синтетических персон
Настраиваемое ролевое взаимодействие в больших языковых моделях (LLM) — это эффективный и экономичный способ разработки и внедрения агентов диалога с определёнными ролями. В данной работе исследуется подход масштабного синтеза данных, направленный на развитие у LLM способности к обобщению характеров.
Процесс начинается с синтеза крупномасштабных профилей персонажей с использованием базы Persona Hub, после чего рассматриваются две стратегии: переформулировка ответов и генерация ответов, чтобы создать ответы, соответствующие заданному персонажу.
Постановка задачи
i) Ролевое взаимодействие в рамках обучающей выборки (in-domain)
- Модель θ обучается (например, методом дообучения с учителем (SFT)) на диалогах с персонажами, в которых участвуют пользователь и определённый персонаж Cs. Диалоги могут быть вручную размечены или синтетическими.
ii) Ролевое взаимодействие вне обучающей выборки (out-of-domain)
- Требует, чтобы модель θ могла вести себя как новые персонажи Cx, отсутствующие в тренировочных данных.
- Чтобы добиться этого, модель должна обобщать на новые роли, что возможно при обучении на качественно подобранных данных с большим разнообразием персонажей, насыщенными профилями и качественными диалогами.
Обобщение персонажей через синтез данных
i) Синтез профилей персонажей
- Модель побуждают создать синтетический профиль персонажа на основе входной персоны, воображая следующие атрибуты: имя, возраст, пол, раса, место рождения, внешность, жизненный опыт и личность.
ii) Переформулировка ответов с учётом персонажа (OpenCharacter-R)
- Инструкции x из общедоступных наборов инструкций сохраняются, а оригинальный ответ y переписывается в yC, соответствующий стилю и биографии персонажа C.
iii) Генерация ответов с учётом персонажа (OpenCharacter-G)
- Модель побуждают сгенерировать ответ yC на инструкцию x, основываясь на профиле персонажа C.
- В отличие от OpenCharacter-R, который переписывает целую сессию диалога одним промптом, OpenCharacter-G работает пошагово, генерируя ответы по очереди для каждого обмена репликами.
Дообучение с учителем (Supervised Fine-Tuning)
- Для каждой сессии диалога случайным образом выбираются n синтетических персонажей C1, C2, ..., Cn из пула из M профилей, и синтезируются n пар «инструкция-ответ» вида (x, yC1 ), (x, yC2 ), ..., (x, yCn) путём переписывания или генерации.
- Все пары из разных персонажей объединяются и используются для SFT с моделью LLaMA-3 8B.
Результаты
- Лучшая модель усилила базовую LLaMA-3 8B Instruct и показала результаты, сопоставимые с GPT-4o в задачах ролевого взаимодействия в диалогах.
Paper: https://arxiv.org/abs/2501.15427
Dataset: https://huggingface.co/datasets/xywang1/OpenCharacter
👉 @bigdata_1
Настраиваемое ролевое взаимодействие в больших языковых моделях (LLM) — это эффективный и экономичный способ разработки и внедрения агентов диалога с определёнными ролями. В данной работе исследуется подход масштабного синтеза данных, направленный на развитие у LLM способности к обобщению характеров.
Процесс начинается с синтеза крупномасштабных профилей персонажей с использованием базы Persona Hub, после чего рассматриваются две стратегии: переформулировка ответов и генерация ответов, чтобы создать ответы, соответствующие заданному персонажу.
Постановка задачи
i) Ролевое взаимодействие в рамках обучающей выборки (in-domain)
- Модель θ обучается (например, методом дообучения с учителем (SFT)) на диалогах с персонажами, в которых участвуют пользователь и определённый персонаж Cs. Диалоги могут быть вручную размечены или синтетическими.
ii) Ролевое взаимодействие вне обучающей выборки (out-of-domain)
- Требует, чтобы модель θ могла вести себя как новые персонажи Cx, отсутствующие в тренировочных данных.
- Чтобы добиться этого, модель должна обобщать на новые роли, что возможно при обучении на качественно подобранных данных с большим разнообразием персонажей, насыщенными профилями и качественными диалогами.
Обобщение персонажей через синтез данных
i) Синтез профилей персонажей
- Модель побуждают создать синтетический профиль персонажа на основе входной персоны, воображая следующие атрибуты: имя, возраст, пол, раса, место рождения, внешность, жизненный опыт и личность.
ii) Переформулировка ответов с учётом персонажа (OpenCharacter-R)
- Инструкции x из общедоступных наборов инструкций сохраняются, а оригинальный ответ y переписывается в yC, соответствующий стилю и биографии персонажа C.
iii) Генерация ответов с учётом персонажа (OpenCharacter-G)
- Модель побуждают сгенерировать ответ yC на инструкцию x, основываясь на профиле персонажа C.
- В отличие от OpenCharacter-R, который переписывает целую сессию диалога одним промптом, OpenCharacter-G работает пошагово, генерируя ответы по очереди для каждого обмена репликами.
Дообучение с учителем (Supervised Fine-Tuning)
- Для каждой сессии диалога случайным образом выбираются n синтетических персонажей C1, C2, ..., Cn из пула из M профилей, и синтезируются n пар «инструкция-ответ» вида (x, yC1 ), (x, yC2 ), ..., (x, yCn) путём переписывания или генерации.
- Все пары из разных персонажей объединяются и используются для SFT с моделью LLaMA-3 8B.
Результаты
- Лучшая модель усилила базовую LLaMA-3 8B Instruct и показала результаты, сопоставимые с GPT-4o в задачах ролевого взаимодействия в диалогах.
Paper: https://arxiv.org/abs/2501.15427
Dataset: https://huggingface.co/datasets/xywang1/OpenCharacter
👉 @bigdata_1
🧩 Critique Fine-Tuning (CFT): новая парадигма обучения LLM
Вместо классического Supervised Fine-Tuning (SFT), где модель учится имитировать «правильные» ответы, авторы предлагают Critique Fine-Tuning (CFT) — обучение через генерацию критики к шумным (и часто ошибочным) ответам.
🔬 Суть подхода:
- Вход:
- Цель: сгенерировать содержательную критику c
- Модель обучается анализировать, а не повторять
📦 Данные:
🔹 WebInstruct-CFT (50K) — критику сгенерировал GPT-4o к оригинальным, часто ошибочным ответам
🔹 Также сформированы baseline-наборы:
-
-
-
Дополнительно:
-
- Сгенерированы критики к MetaMathQA и NuminaMath
🧠 Обучение:
Модели: Qwen2.5, Qwen2.5-Math, DeepSeekMath (7B и 32B)
Обучение — генерация критики, а не ответов
Формат:
📈 Результаты:
7B модели:
-
-
32B модели:
-
🔗 Ресурсы:
- 📄 Blog
- 🛠️ Paper
- 📊 Code
- 📝 Dataset
CFT показывает, что генерация критики — мощный способ учить модели анализу и обоснованности, а не только подражанию. Подход уже сегодня улучшает производительность на математических задачах с ограниченным количеством данных.
👉 @bigdata_1
Вместо классического Supervised Fine-Tuning (SFT), где модель учится имитировать «правильные» ответы, авторы предлагают Critique Fine-Tuning (CFT) — обучение через генерацию критики к шумным (и часто ошибочным) ответам.
🔬 Суть подхода:
- Вход:
(инструкция x + ответ y)
- Цель: сгенерировать содержательную критику c
- Модель обучается анализировать, а не повторять
📦 Данные:
🔹 WebInstruct-CFT (50K) — критику сгенерировал GPT-4o к оригинальным, часто ошибочным ответам
🔹 Также сформированы baseline-наборы:
-
WebInstruct-SFT
(ошибочные ответы, 50K)-
WebInstruct-verified
(вручную верифицированные GPT-4o, 50K)-
WebInstruct-GPT-4o
(ответы от GPT-4o, 50K)Дополнительно:
-
WebInstruct-CFT-Tiny
(4K) — для экономного fine-tuning моделей 32B- Сгенерированы критики к MetaMathQA и NuminaMath
🧠 Обучение:
Модели: Qwen2.5, Qwen2.5-Math, DeepSeekMath (7B и 32B)
Обучение — генерация критики, а не ответов
Формат:
concat(x, y) → c
📈 Результаты:
7B модели:
-
Qwen2.5-Math-7B (base)
→ 37.8% avg accuracy-
+CFT
→ 56.0% — лучший результат среди 7B32B модели:
-
Qwen2.5–32B-Instruct-CFT (4K)
превзошла Sky-T1–32B-Preview (17K)🔗 Ресурсы:
- 📄 Blog
- 🛠️ Paper
- 📊 Code
- 📝 Dataset
CFT показывает, что генерация критики — мощный способ учить модели анализу и обоснованности, а не только подражанию. Подход уже сегодня улучшает производительность на математических задачах с ограниченным количеством данных.
👉 @bigdata_1
EvalPlanner: модель Thinking-LLM-as-a-Judge, которая учится думать путём планирования и рассуждения при оценке
Модели LLM-as-a-Judge (LLM в роли судьи) генерируют цепочки рассуждений (Chain-of-Thought, CoT), отражающие пошаговый процесс размышлений, лежащий в основе финальной оценки ответа. Однако отсутствие размеченных вручную цепочек CoT затрудняет обучение таких моделей.
Чтобы решить эту проблему, в данной работе представлена EvalPlanner — алгоритм оптимизации предпочтений для Thinking-LLM-as-a-Judge. Он сначала генерирует неограниченный план оценки, затем исполняет его, и только потом выносит итоговый вердикт.
Компоненты
EvalPlanner предполагает, что эффективная цепочка рассуждений для оценки должна состоять из трёх компонентов:
1. План оценки z
— Для данной инструкции план задаёт рецепт оценки предложенных ответов на инструкцию.
2. Исполнение плана
— Отвечает за пошаговое проведение оценки по плану, анализируя пару ответов (a и b) и формируя итоговое суждение y.
3. Итоговый вердикт
— При использовании LLM в роли судьи, параметризованной θ, план z и исполнение e считаются скрытыми переменными.
Генерация синтетических обучающих данных
1. Выбираются общие инструкции и задачи на математическое рассуждение, и генерируются пары ответов.
2. Создаётся универсальный и неограниченный промпт для генерации плана, который задаётся модели-источнику, основываясь только на инструкции.
3. Та же модель-источник используется для выполнения плана на основе инструкции и пары ответов с целью получения вердикта.
4. Формируются пары предпочтений между планами и их исполнениями.
Оптимизация предпочтений планов и исполнений
Включает цикл самообучения:
- Начинается с модели-источника, на которой проводится SFT (Supervised Fine-Tuning) на подмножестве «выбранных» CoT, чтобы получить модель \( M₁^{SFT} \).
- Затем выполняются две итерации Direct Preference Optimization (DPO) на парах предпочтений CoT, в результате чего получаются модели \( M₁^{DPO} \) и \( M₂^{DPO} \).
Результаты
- EvalPlanner достигает нового SOTA (state-of-the-art) результата для генеративных reward-моделей на бенчмарке RewardBench (со счётом 93.9), несмотря на меньшее количество и синтетическую природу пар предпочтений.
- Планы EvalPlanner адаптированы под конкретную инструкцию, эффективны с точки зрения данных и выигрывают от итеративной оптимизации рассуждений.
- 📄 Blog
- 🛠️ Paper
👉 @bigdata_1
Модели LLM-as-a-Judge (LLM в роли судьи) генерируют цепочки рассуждений (Chain-of-Thought, CoT), отражающие пошаговый процесс размышлений, лежащий в основе финальной оценки ответа. Однако отсутствие размеченных вручную цепочек CoT затрудняет обучение таких моделей.
Чтобы решить эту проблему, в данной работе представлена EvalPlanner — алгоритм оптимизации предпочтений для Thinking-LLM-as-a-Judge. Он сначала генерирует неограниченный план оценки, затем исполняет его, и только потом выносит итоговый вердикт.
Компоненты
EvalPlanner предполагает, что эффективная цепочка рассуждений для оценки должна состоять из трёх компонентов:
1. План оценки z
— Для данной инструкции план задаёт рецепт оценки предложенных ответов на инструкцию.
2. Исполнение плана
— Отвечает за пошаговое проведение оценки по плану, анализируя пару ответов (a и b) и формируя итоговое суждение y.
3. Итоговый вердикт
— При использовании LLM в роли судьи, параметризованной θ, план z и исполнение e считаются скрытыми переменными.
Генерация синтетических обучающих данных
1. Выбираются общие инструкции и задачи на математическое рассуждение, и генерируются пары ответов.
2. Создаётся универсальный и неограниченный промпт для генерации плана, который задаётся модели-источнику, основываясь только на инструкции.
3. Та же модель-источник используется для выполнения плана на основе инструкции и пары ответов с целью получения вердикта.
4. Формируются пары предпочтений между планами и их исполнениями.
Оптимизация предпочтений планов и исполнений
Включает цикл самообучения:
- Начинается с модели-источника, на которой проводится SFT (Supervised Fine-Tuning) на подмножестве «выбранных» CoT, чтобы получить модель \( M₁^{SFT} \).
- Затем выполняются две итерации Direct Preference Optimization (DPO) на парах предпочтений CoT, в результате чего получаются модели \( M₁^{DPO} \) и \( M₂^{DPO} \).
Результаты
- EvalPlanner достигает нового SOTA (state-of-the-art) результата для генеративных reward-моделей на бенчмарке RewardBench (со счётом 93.9), несмотря на меньшее количество и синтетическую природу пар предпочтений.
- Планы EvalPlanner адаптированы под конкретную инструкцию, эффективны с точки зрения данных и выигрывают от итеративной оптимизации рассуждений.
- 📄 Blog
- 🛠️ Paper
👉 @bigdata_1
⚡️Хотите стать востребованным экспертом в области рекомендательных систем?
Курс OTUS «Рекомендательные системы» — это практические занятия, живые лекции от ведущих DS/ML-специалистов и актуальные инструменты, которые используют крупнейшие компании. Вы научитесь создавать персонализированные рекомендации, внедрять системы под задачи e-commerce и стриминговых сервисов, эффективно сегментировать пользователей и проводить A/B-тесты.
После курса вы сможете реализовывать решения, которые принесут пользу бизнесу.
👉Оставьте заявку и получите скидку на обучение: https://vk.cc/cKTBkL
Курс OTUS «Рекомендательные системы» — это практические занятия, живые лекции от ведущих DS/ML-специалистов и актуальные инструменты, которые используют крупнейшие компании. Вы научитесь создавать персонализированные рекомендации, внедрять системы под задачи e-commerce и стриминговых сервисов, эффективно сегментировать пользователей и проводить A/B-тесты.
После курса вы сможете реализовывать решения, которые принесут пользу бизнесу.
👉Оставьте заявку и получите скидку на обучение: https://vk.cc/cKTBkL
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576
🖼️ Describe Anything (DAM) — новая модель от NVIDIA и UC Berkeley, способная создавать подробные описания выбранных областей на изображениях и видео.
🔍 Что делает DAM?
• Генерирует детальные описания для указанных пользователем областей (точки, рамки, маски, штрихи) на изображениях и видео.
• Адаптируется к стилю и детализации описания по инструкции пользователя.
• Отвечает на вопросы о выделенных областях без дополнительного обучения.
🧠 Как это работает?
• Использует “focal prompt” — сочетание общего изображения и увеличенной области интереса.
• Интегрирует локальные и глобальные признаки через специализированную архитектуру.
• Обучена с помощью полусупервизируемого пайплайна DLC-SDP, расширяющего существующие датасеты.
📊 Почему это важно?
• Устанавливает новые стандарты в задачах детализированного описания изображений и видео.
• Превосходит предыдущие модели на 7 бенчмарках, включая PACO и Flickr30k Entities.
• Открытый код, модели и данные доступны для сообщества.
🔗 Подробнее: https://describe-anything.github.io/
Демо: https://huggingface.co/spaces/nvidia/describe-anything-model-demo
Код: https://github.com/NVlabs/describe-anything
👉 @bigdata_1
🔍 Что делает DAM?
• Генерирует детальные описания для указанных пользователем областей (точки, рамки, маски, штрихи) на изображениях и видео.
• Адаптируется к стилю и детализации описания по инструкции пользователя.
• Отвечает на вопросы о выделенных областях без дополнительного обучения.
🧠 Как это работает?
• Использует “focal prompt” — сочетание общего изображения и увеличенной области интереса.
• Интегрирует локальные и глобальные признаки через специализированную архитектуру.
• Обучена с помощью полусупервизируемого пайплайна DLC-SDP, расширяющего существующие датасеты.
📊 Почему это важно?
• Устанавливает новые стандарты в задачах детализированного описания изображений и видео.
• Превосходит предыдущие модели на 7 бенчмарках, включая PACO и Flickr30k Entities.
• Открытый код, модели и данные доступны для сообщества.
🔗 Подробнее: https://describe-anything.github.io/
Демо: https://huggingface.co/spaces/nvidia/describe-anything-model-demo
Код: https://github.com/NVlabs/describe-anything
👉 @bigdata_1
🛠️ UTGEN + UTDEBUG: обучаем LLM генерировать модульные тесты для автоматической отладки кода
Модульные тесты помогают LLM исправлять ошибки в коде. Но сложно одновременно подобрать тесты к багованному коду и правильно предсказать ожидаемый результат без эталона.
Решение: UTGEN учит LLM генерировать входы и правильные выходы тестов на основе описания задачи и кода-кандидата.
+ UTDEBUG — пайплайн отладки, который использует эти тесты, чтобы повышать качество исправлений.
Как работает:
- Портят эталонный код → создают баги.
- Генерируют тесты, оставляя только те, что выявляют ошибки.
- Добавляют цепочки рассуждений (CoT) к тестам.
- При отладке используют голосование по нескольким ответам и откат, если изменения не улучшают процент прохождения тестов.
Результаты:
- UTGEN лучше базовых методов на +7.59%.
- С UTDEBUG модель Qwen-2.5 7B показывает рост pass@1 на +3% (HumanEval-Fix) и +12.35% (MBPP+).
Blog https://medium.com/@techsachin/teaching-llms-to-generate-unit-tests-for-automated-debugging-of-code-78c62778e4b2
Paper https://arxiv.org/abs/2502.01619
Code https://github.com/archiki/UTGenDebug
👉 @bigdata_1
Модульные тесты помогают LLM исправлять ошибки в коде. Но сложно одновременно подобрать тесты к багованному коду и правильно предсказать ожидаемый результат без эталона.
Решение: UTGEN учит LLM генерировать входы и правильные выходы тестов на основе описания задачи и кода-кандидата.
+ UTDEBUG — пайплайн отладки, который использует эти тесты, чтобы повышать качество исправлений.
Как работает:
- Портят эталонный код → создают баги.
- Генерируют тесты, оставляя только те, что выявляют ошибки.
- Добавляют цепочки рассуждений (CoT) к тестам.
- При отладке используют голосование по нескольким ответам и откат, если изменения не улучшают процент прохождения тестов.
Результаты:
- UTGEN лучше базовых методов на +7.59%.
- С UTDEBUG модель Qwen-2.5 7B показывает рост pass@1 на +3% (HumanEval-Fix) и +12.35% (MBPP+).
Blog https://medium.com/@techsachin/teaching-llms-to-generate-unit-tests-for-automated-debugging-of-code-78c62778e4b2
Paper https://arxiv.org/abs/2502.01619
Code https://github.com/archiki/UTGenDebug
👉 @bigdata_1
❔Хотите узнать, как популярные приложения угадывают ваши предпочтения? Матричная факторизация — мощный подход для построения рекомендаций.
На открытом вебинаре 30 апреля в 20:00 МСК вы разберетесь с принципами работы моделей матричной факторизации (SVD, ALS), поймёте, как реализовать их на Python с помощью библиотеки implicit и получите практические навыки, которые сразу сможете применить.
После занятия вы сможете создавать эффективные рекомендательные системы и использовать потенциал данных вашего бизнеса для персонализированных решений.
⚡️Регистрируйтесь на открытый урок и получите скидку на программу обучения «Рекомендательные системы»: https://vk.cc/cLe0ky
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576
На открытом вебинаре 30 апреля в 20:00 МСК вы разберетесь с принципами работы моделей матричной факторизации (SVD, ALS), поймёте, как реализовать их на Python с помощью библиотеки implicit и получите практические навыки, которые сразу сможете применить.
После занятия вы сможете создавать эффективные рекомендательные системы и использовать потенциал данных вашего бизнеса для персонализированных решений.
⚡️Регистрируйтесь на открытый урок и получите скидку на программу обучения «Рекомендательные системы»: https://vk.cc/cLe0ky
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576
Atropos — RL Gym для LLM от Nous Research
Atropos — это серия мощных, специализированных моделей LLM, разработанных Nous Research. Она построена на базе архитектуры Mixtral и была обучена с нуля с использованием 4 триллионов токенов данных высокого качества. В серии представлены как полные модели, так и чаты, доступные в формате 7B, с открытым доступом к весам.
Модели Atropos предназначены для генерации, рассуждения, программирования и работы с документами, а также для общения в стиле чата. Они могут использоваться как для задач с одним токеном, так и для сложных задач, требующих многошагового мышления.
https://nousresearch.com/introducing-atropos/
https://github.com/NousResearch/Atropos
👉 @bigdata_1
Atropos — это серия мощных, специализированных моделей LLM, разработанных Nous Research. Она построена на базе архитектуры Mixtral и была обучена с нуля с использованием 4 триллионов токенов данных высокого качества. В серии представлены как полные модели, так и чаты, доступные в формате 7B, с открытым доступом к весам.
Модели Atropos предназначены для генерации, рассуждения, программирования и работы с документами, а также для общения в стиле чата. Они могут использоваться как для задач с одним токеном, так и для сложных задач, требующих многошагового мышления.
https://nousresearch.com/introducing-atropos/
https://github.com/NousResearch/Atropos
👉 @bigdata_1
🧠 ThinkPRM: Новый стандарт в верификации решений через Chain-of-Thought
🤖 Верификаторы пошаговых рассуждений (PRMs) — мощный инструмент масштабирования проверки решений на этапе инференса. Но их обучение требует дорогостоящей покадровой разметки.
🔍 Представляем ThinkPRM — data-efficient PRM, который генерирует цепочку верификации (Chain-of-Thought) для каждого шага решения, опираясь на всего 1% меток из PRM800K — и при этом превосходит LLM-as-a-Judge и дискриминативные PRM.
❗️Что не так с LLM-as-a-Judge:
* чувствительность к формулировке инструкции
* ошибки в логике и невалидные итоговые решения
* неправильный формат ответа
* зацикливание и “overthinking”, приводящее к превышению лимита токенов
🧪 Метод ThinkPRM:
1️⃣ Синтетические данные:
* Модель QwQ-32B-Preview генерирует цепочки верификации
* Отбираются только те, где шаги соответствуют PRM800K и укладываются в токен-бюджет
2️⃣ Обучение на 1K цепочках:
* Модель тонко настраивается на выбранных верификациях
* Тестируется на ProcessBench и сравнивается с LLM-as-a-Judge
📊 Результаты:
* 🔝 ThinkPRM превосходит базовые модели на ProcessBench, MATH-500 и AIME’24
* 🧬 На GPQA-Diamond и LiveCodeBench — выигрывает у дискриминативных моделей на 8% и 4.5%
* 📈 При том же токен-бюджете ThinkPRM эффективнее масштабирует верификацию, +7.2% на ProcessBench
💡 ThinkPRM показывает, что меньшее — значит умнее.
Настраивай, не размечай.
Проверяй умно, шаг за шагом.
✅ Blog: https://medium.com/@techsachin/thinkprm-generative-process-reward-model-for-solution-verification-via-long-cot-reasoning-2016f1e1387d
✅ Paper: https://arxiv.org/abs/2504.16828
✅ Dataset: https://huggingface.co/datasets/launch/thinkprm-1K-verification-cots
✅ Models:
- ThinkPRM-14B: https://huggingface.co/launch/ThinkPRM-14B
- ThinkPRM-1.5B: https://huggingface.co/launch/ThinkPRM-1.5B
👉 @bigdata_1
🤖 Верификаторы пошаговых рассуждений (PRMs) — мощный инструмент масштабирования проверки решений на этапе инференса. Но их обучение требует дорогостоящей покадровой разметки.
🔍 Представляем ThinkPRM — data-efficient PRM, который генерирует цепочку верификации (Chain-of-Thought) для каждого шага решения, опираясь на всего 1% меток из PRM800K — и при этом превосходит LLM-as-a-Judge и дискриминативные PRM.
❗️Что не так с LLM-as-a-Judge:
* чувствительность к формулировке инструкции
* ошибки в логике и невалидные итоговые решения
* неправильный формат ответа
* зацикливание и “overthinking”, приводящее к превышению лимита токенов
🧪 Метод ThinkPRM:
1️⃣ Синтетические данные:
* Модель QwQ-32B-Preview генерирует цепочки верификации
* Отбираются только те, где шаги соответствуют PRM800K и укладываются в токен-бюджет
2️⃣ Обучение на 1K цепочках:
* Модель тонко настраивается на выбранных верификациях
* Тестируется на ProcessBench и сравнивается с LLM-as-a-Judge
📊 Результаты:
* 🔝 ThinkPRM превосходит базовые модели на ProcessBench, MATH-500 и AIME’24
* 🧬 На GPQA-Diamond и LiveCodeBench — выигрывает у дискриминативных моделей на 8% и 4.5%
* 📈 При том же токен-бюджете ThinkPRM эффективнее масштабирует верификацию, +7.2% на ProcessBench
💡 ThinkPRM показывает, что меньшее — значит умнее.
Настраивай, не размечай.
Проверяй умно, шаг за шагом.
✅ Blog: https://medium.com/@techsachin/thinkprm-generative-process-reward-model-for-solution-verification-via-long-cot-reasoning-2016f1e1387d
✅ Paper: https://arxiv.org/abs/2504.16828
✅ Dataset: https://huggingface.co/datasets/launch/thinkprm-1K-verification-cots
✅ Models:
- ThinkPRM-14B: https://huggingface.co/launch/ThinkPRM-14B
- ThinkPRM-1.5B: https://huggingface.co/launch/ThinkPRM-1.5B
👉 @bigdata_1
🧑🏻💻Как улучшить точность рекомендаций в своих проектах?
На открытом вебинаре 12 мая в 20:00 МСК вы узнаете, как работает обучение ранжированию, что такое функции потерь и как они влияют на качество рекомендаций. Понимание этих функций — ключ к эффективному предсказанию предпочтений пользователей.
Освойте практику на реальных данных с использованием модели BPRMF и получите ценные знания, которые помогут улучшить ваши результаты.
⚡️Присоединяйтесь к открытому уроку и получите скидку на программу обучения «Рекомендательные системы»: https://vk.cc/cLEzhI
На открытом вебинаре 12 мая в 20:00 МСК вы узнаете, как работает обучение ранжированию, что такое функции потерь и как они влияют на качество рекомендаций. Понимание этих функций — ключ к эффективному предсказанию предпочтений пользователей.
Освойте практику на реальных данных с использованием модели BPRMF и получите ценные знания, которые помогут улучшить ваши результаты.
⚡️Присоединяйтесь к открытому уроку и получите скидку на программу обучения «Рекомендательные системы»: https://vk.cc/cLEzhI
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576
MatAnyOne - memory-based модель для видео-маттинга, разработанная для получения стабильных и точных результатов в сценариях реального постпродакшена. В отличие от методов, требующих дополнительного аннотирования, MatAnyOne использует только кадры видео и маску сегментации целевого объекта, определенную на первом кадре.
MatAnyOne оперирует регионально-адаптивным слиянием памяти, где области с небольшими изменениями сохраняют данные из предыдущего кадра, а области с большими изменениями больше полагаются на информацию из текущего кадра. Такая техника позволяет MatAnyOne эффективно отслеживать целевой объект, даже в сложных и неоднозначных сценах, сохраняя при этом четкие границы и целые части переднего плана.
При создании модели применялась уникальная стратегия обучения, которая опирается на данные сегментации для улучшения стабильности выделения объекта. В отличие от распространенных практик, MatAnyOne использует эти данные непосредственно в той же ветви, что и данные маски. Это достигается путем применения регионально-специфичных потерь: пиксельная потеря для основных областей и улучшенная DDC-потеря для граничных областей.
Для обучения был специально создан кастомный набор данных VM800, который вдвое больше, разнообразнее и качественнее, чем VideoMatte240K, что по итогу значительно улучшило надежность обучения объектному выделению на видео.
В тестах MatAnyOne показал высокие результаты по сравнению с существующими методами как на синтетических, так и на реальных видео:
⚠️ Согласно обсуждению в
issues
репозитория, MatAnyOne способен работать локально от 4 GB VRAM и выше с видео небольшой длительности. Реальных технических критериев разработчик не опубликовал.Страница проекта
Модель
Arxiv
Demo
GitHub
👉 @bigdata_1
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Rag | самое понятное объяснение!
В этом подробном гайд‑видео я раскрываю всё, что нужно знать о RAG (Retrieval Augmented Generation) — передовом подходе, который выводит большие языковые модели (LLM, GPT‑4, ChatGPT и др.) на новый уровень, добавляя к их генеративным возможностям живую, актуальную базу знаний. Вы увидите, как на практике связать эмбеддинги, векторное хранилище, retriever и generator, чтобы буквально «подпитать» модель свежим контентом и получить точные, аргументированные ответы без «галлюцинаций».
Я пошагово показываю архитектуру, объясняю ключевые нюансы (latency, стоимость, обновление данных), визуально скетчу процесс, разбираю реальные сценарии применения: чат‑бот поддержки, интеллектуальный поиск по корпоративным документам, персонализированный ассистент и многое другое. Параллельно я делюсь лайфхаками, где RAG приносит максимальную пользу, а где лучше отказаться от него в пользу классических решений. После просмотра у вас будет чёткая дорожная карта: как спроектировать, собрать и оптимизировать собственную RAG‑систему под ваш use case.
автор: AIRANEZ
👉 @bigdata_1
В этом подробном гайд‑видео я раскрываю всё, что нужно знать о RAG (Retrieval Augmented Generation) — передовом подходе, который выводит большие языковые модели (LLM, GPT‑4, ChatGPT и др.) на новый уровень, добавляя к их генеративным возможностям живую, актуальную базу знаний. Вы увидите, как на практике связать эмбеддинги, векторное хранилище, retriever и generator, чтобы буквально «подпитать» модель свежим контентом и получить точные, аргументированные ответы без «галлюцинаций».
Я пошагово показываю архитектуру, объясняю ключевые нюансы (latency, стоимость, обновление данных), визуально скетчу процесс, разбираю реальные сценарии применения: чат‑бот поддержки, интеллектуальный поиск по корпоративным документам, персонализированный ассистент и многое другое. Параллельно я делюсь лайфхаками, где RAG приносит максимальную пользу, а где лучше отказаться от него в пользу классических решений. После просмотра у вас будет чёткая дорожная карта: как спроектировать, собрать и оптимизировать собственную RAG‑систему под ваш use case.
автор: AIRANEZ
👉 @bigdata_1
🧠 ThinkPRM — умный верификатор решений через цепочки рассуждений
Новая модель ThinkPRM проверяет решения пошагово, генерируя цепочку верификации (Chain-of-Thought) — и делает это точнее и в разы дешевле, чем классические PRM, требующие дорогой разметки.
Что нового:
— Использует всего 1% разметки от PRM800K
— Превзошла LLM-as-a-Judge и дискриминативные PRM на задачах из ProcessBench, MATH-500 и AIME'24
— Лучше справляется с зацикливанием, форматом вывода и «переосмыслением»
📊 Вне домена: +8% на GPQA-Diamond, +4.5% на LiveCodeBench
📦 Модель доступна:
👉 [ThinkPRM-14B]
👉 [ThinkPRM-1.5B]
🔗 [Блог] | [Статья] | [Датасет]
👉 @bigdata_1
Новая модель ThinkPRM проверяет решения пошагово, генерируя цепочку верификации (Chain-of-Thought) — и делает это точнее и в разы дешевле, чем классические PRM, требующие дорогой разметки.
Что нового:
— Использует всего 1% разметки от PRM800K
— Превзошла LLM-as-a-Judge и дискриминативные PRM на задачах из ProcessBench, MATH-500 и AIME'24
— Лучше справляется с зацикливанием, форматом вывода и «переосмыслением»
📊 Вне домена: +8% на GPQA-Diamond, +4.5% на LiveCodeBench
📦 Модель доступна:
👉 [ThinkPRM-14B]
👉 [ThinkPRM-1.5B]
🔗 [Блог] | [Статья] | [Датасет]
👉 @bigdata_1
Проект для профи, делайте курс вместе с Яндекс Практикумом!
Яндекс Практикум Грейд — это новый сервис онлайн-образования, ориентированный на корпоративных клиентов. Наша цель — помочь уже работающим специалистам расти и развивать свои навыки. Сейчас есть возможность присоединиться к команде и разработать курс Deep Learning.
Автор готовит тексты уроков, тесты, памятки и прочие материалы, упаковывает свой опыт в учебные кейсы и в буквальном смысле влияет на развитие индустрии.
Кандидату предлагают удалёнку, нагрузку от 10 часов в неделю, гибкую занятость. А главное, возможность развиваться вместе с Яндекс Практикумом нон-стоп.
Нужен эксперт с опытом работы с глубокими моделями машинного обучения (любая доменная область) и уверенным пониманием области применения DL-моделей, а также их ограничений.
Узнать подробности и откликнуться
Яндекс Практикум Грейд — это новый сервис онлайн-образования, ориентированный на корпоративных клиентов. Наша цель — помочь уже работающим специалистам расти и развивать свои навыки. Сейчас есть возможность присоединиться к команде и разработать курс Deep Learning.
Автор готовит тексты уроков, тесты, памятки и прочие материалы, упаковывает свой опыт в учебные кейсы и в буквальном смысле влияет на развитие индустрии.
Кандидату предлагают удалёнку, нагрузку от 10 часов в неделю, гибкую занятость. А главное, возможность развиваться вместе с Яндекс Практикумом нон-стоп.
Нужен эксперт с опытом работы с глубокими моделями машинного обучения (любая доменная область) и уверенным пониманием области применения DL-моделей, а также их ограничений.
Узнать подробности и откликнуться
DiffusionInst: Diffusion Model for Instance Segmentation
DiffusionInst — первый алгоритм диффузионной модели для сегментации объектов.
🖥 Github:https://github.com/chenhaoxing/DiffusionInst
🌐 Instruction: https://github.com/chenhaoxing/DiffusionInst/blob/main/GETTING_STARTED.md
⏩ Paprer: https://arxiv.org/abs/2212.02773v2
⭐️ Dataset: https://paperswithcode.com/dataset/lvis
👉 @bigdata_1
DiffusionInst — первый алгоритм диффузионной модели для сегментации объектов.
🖥 Github:https://github.com/chenhaoxing/DiffusionInst
🌐 Instruction: https://github.com/chenhaoxing/DiffusionInst/blob/main/GETTING_STARTED.md
⏩ Paprer: https://arxiv.org/abs/2212.02773v2
⭐️ Dataset: https://paperswithcode.com/dataset/lvis
👉 @bigdata_1