Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/bigdata_1/--): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
BigData@bigdata_1 P.960
BIGDATA_1 Telegram 960
OpenCharacter: обучение настраиваемых LLM для ролевого взаимодействия с использованием масштабных синтетических персон

Настраиваемое ролевое взаимодействие в больших языковых моделях (LLM) — это эффективный и экономичный способ разработки и внедрения агентов диалога с определёнными ролями. В данной работе исследуется подход масштабного синтеза данных, направленный на развитие у LLM способности к обобщению характеров.

Процесс начинается с синтеза крупномасштабных профилей персонажей с использованием базы Persona Hub, после чего рассматриваются две стратегии: переформулировка ответов и генерация ответов, чтобы создать ответы, соответствующие заданному персонажу.


Постановка задачи

i) Ролевое взаимодействие в рамках обучающей выборки (in-domain)
- Модель θ обучается (например, методом дообучения с учителем (SFT)) на диалогах с персонажами, в которых участвуют пользователь и определённый персонаж Cs. Диалоги могут быть вручную размечены или синтетическими.

ii) Ролевое взаимодействие вне обучающей выборки (out-of-domain)
- Требует, чтобы модель θ могла вести себя как новые персонажи Cx, отсутствующие в тренировочных данных.
- Чтобы добиться этого, модель должна обобщать на новые роли, что возможно при обучении на качественно подобранных данных с большим разнообразием персонажей, насыщенными профилями и качественными диалогами.



Обобщение персонажей через синтез данных

i) Синтез профилей персонажей
- Модель побуждают создать синтетический профиль персонажа на основе входной персоны, воображая следующие атрибуты: имя, возраст, пол, раса, место рождения, внешность, жизненный опыт и личность.

ii) Переформулировка ответов с учётом персонажа (OpenCharacter-R)
- Инструкции x из общедоступных наборов инструкций сохраняются, а оригинальный ответ y переписывается в yC, соответствующий стилю и биографии персонажа C.

iii) Генерация ответов с учётом персонажа (OpenCharacter-G)
- Модель побуждают сгенерировать ответ yC на инструкцию x, основываясь на профиле персонажа C.
- В отличие от OpenCharacter-R, который переписывает целую сессию диалога одним промптом, OpenCharacter-G работает пошагово, генерируя ответы по очереди для каждого обмена репликами.



Дообучение с учителем (Supervised Fine-Tuning)

- Для каждой сессии диалога случайным образом выбираются n синтетических персонажей C1, C2, ..., Cn из пула из M профилей, и синтезируются n пар «инструкция-ответ» вида (x, yC1 ), (x, yC2 ), ..., (x, yCn) путём переписывания или генерации.
- Все пары из разных персонажей объединяются и используются для SFT с моделью LLaMA-3 8B.

Результаты
- Лучшая модель усилила базовую LLaMA-3 8B Instruct и показала результаты, сопоставимые с GPT-4o в задачах ролевого взаимодействия в диалогах.

Paper: https://arxiv.org/abs/2501.15427
Dataset: https://huggingface.co/datasets/xywang1/OpenCharacter

👉 @bigdata_1



tgoop.com/bigdata_1/960
Create:
Last Update:

OpenCharacter: обучение настраиваемых LLM для ролевого взаимодействия с использованием масштабных синтетических персон

Настраиваемое ролевое взаимодействие в больших языковых моделях (LLM) — это эффективный и экономичный способ разработки и внедрения агентов диалога с определёнными ролями. В данной работе исследуется подход масштабного синтеза данных, направленный на развитие у LLM способности к обобщению характеров.

Процесс начинается с синтеза крупномасштабных профилей персонажей с использованием базы Persona Hub, после чего рассматриваются две стратегии: переформулировка ответов и генерация ответов, чтобы создать ответы, соответствующие заданному персонажу.


Постановка задачи

i) Ролевое взаимодействие в рамках обучающей выборки (in-domain)
- Модель θ обучается (например, методом дообучения с учителем (SFT)) на диалогах с персонажами, в которых участвуют пользователь и определённый персонаж Cs. Диалоги могут быть вручную размечены или синтетическими.

ii) Ролевое взаимодействие вне обучающей выборки (out-of-domain)
- Требует, чтобы модель θ могла вести себя как новые персонажи Cx, отсутствующие в тренировочных данных.
- Чтобы добиться этого, модель должна обобщать на новые роли, что возможно при обучении на качественно подобранных данных с большим разнообразием персонажей, насыщенными профилями и качественными диалогами.



Обобщение персонажей через синтез данных

i) Синтез профилей персонажей
- Модель побуждают создать синтетический профиль персонажа на основе входной персоны, воображая следующие атрибуты: имя, возраст, пол, раса, место рождения, внешность, жизненный опыт и личность.

ii) Переформулировка ответов с учётом персонажа (OpenCharacter-R)
- Инструкции x из общедоступных наборов инструкций сохраняются, а оригинальный ответ y переписывается в yC, соответствующий стилю и биографии персонажа C.

iii) Генерация ответов с учётом персонажа (OpenCharacter-G)
- Модель побуждают сгенерировать ответ yC на инструкцию x, основываясь на профиле персонажа C.
- В отличие от OpenCharacter-R, который переписывает целую сессию диалога одним промптом, OpenCharacter-G работает пошагово, генерируя ответы по очереди для каждого обмена репликами.



Дообучение с учителем (Supervised Fine-Tuning)

- Для каждой сессии диалога случайным образом выбираются n синтетических персонажей C1, C2, ..., Cn из пула из M профилей, и синтезируются n пар «инструкция-ответ» вида (x, yC1 ), (x, yC2 ), ..., (x, yCn) путём переписывания или генерации.
- Все пары из разных персонажей объединяются и используются для SFT с моделью LLaMA-3 8B.

Результаты
- Лучшая модель усилила базовую LLaMA-3 8B Instruct и показала результаты, сопоставимые с GPT-4o в задачах ролевого взаимодействия в диалогах.

Paper: https://arxiv.org/abs/2501.15427
Dataset: https://huggingface.co/datasets/xywang1/OpenCharacter

👉 @bigdata_1

BY BigData




Share with your friend now:
tgoop.com/bigdata_1/960

View MORE
Open in Telegram


Telegram News

Date: |

A few years ago, you had to use a special bot to run a poll on Telegram. Now you can easily do that yourself in two clicks. Hit the Menu icon and select “Create Poll.” Write your question and add up to 10 options. Running polls is a powerful strategy for getting feedback from your audience. If you’re considering the possibility of modifying your channel in any way, be sure to ask your subscribers’ opinions first. It’s easy to create a Telegram channel via desktop app or mobile app (for Android and iOS): “[The defendant] could not shift his criminal liability,” Hui said. How to create a business channel on Telegram? (Tutorial) ZDNET RECOMMENDS
from us


Telegram BigData
FROM American