Notice: file_put_contents(): Write of 11398 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50

Warning: file_put_contents(): Only 8192 of 19590 bytes written, possibly out of free disk space in /var/www/tgoop/post.php on line 50
BigData@bigdata_1 P.915
BIGDATA_1 Telegram 915
Тренажёр-практикум Python и SQL
(от NumPy и OpenCV до PostgreSQL) в аналитике данных и ML


Откройте карьерные возможности в машинном обучении и аналитике данных
- Научитесь проводить анализ больших объёмов данных.
- Создавайте интерактивные и 3D-визуализации для представления данных.
- Освойте работу с SQL-базами для хранения, модификации и извлечения данных.
- Оптимизируйте запросы и управляйте структурой данных в базах.

🫡 Для кого будет полезен этот тренажёр?

Аналитикам данных, бизнес-аналитикам и продуктовым специалистам:
Новичкам и продолжающим в области анализа и визуализации данных, которые хотят освоить ключевые инструменты для эффективного анализа и машинного обучения на практике.

Тем, кто уже знаком с Python и стремится развиваться в аналитике данных и ML:
Разработчикам и специалистам по данным, стремящимся углубить навыки обработки данных и визуализации.

Инженерам данных и всем заинтересованным:
Тем, кто сталкивается с трудностями при предобработке данных для моделей машинного обучения и хочет выстроить системный подход к работе с ними.

Тем, кто стремится автоматизировать процессы и управлять данными:
После курса вы научитесь эффективно работать с NumPy и Pandas, создавать визуализации через Matplotlib и Seaborn, а также управлять базами данных с PostgreSQL.

Примеры задач, которые вы решите в тренажёре:
- Анализ температурных данных
- Редактор изображений
- Временной анализ продаж

🎓 Попробуйте первые уроки бесплатно!
В демо-версии курса вы познакомитесь с основами библиотек NumPy, Pandas и Matplotlib, научитесь создавать и редактировать массивы, работать с изображениями и применять эти навыки для решения практических задач в разных областях.
Пройдите 6 практических заданий сразу!
PS. В демо также доступен ИИ-бот ДуДу с code review 24/7.

👉 Регистрация на демо-доступ

Реклама. Информация о рекламодателе
1👍1🔥1



tgoop.com/bigdata_1/915
Create:
Last Update:

Тренажёр-практикум Python и SQL
(от NumPy и OpenCV до PostgreSQL) в аналитике данных и ML


Откройте карьерные возможности в машинном обучении и аналитике данных
- Научитесь проводить анализ больших объёмов данных.
- Создавайте интерактивные и 3D-визуализации для представления данных.
- Освойте работу с SQL-базами для хранения, модификации и извлечения данных.
- Оптимизируйте запросы и управляйте структурой данных в базах.

🫡 Для кого будет полезен этот тренажёр?

Аналитикам данных, бизнес-аналитикам и продуктовым специалистам:
Новичкам и продолжающим в области анализа и визуализации данных, которые хотят освоить ключевые инструменты для эффективного анализа и машинного обучения на практике.

Тем, кто уже знаком с Python и стремится развиваться в аналитике данных и ML:
Разработчикам и специалистам по данным, стремящимся углубить навыки обработки данных и визуализации.

Инженерам данных и всем заинтересованным:
Тем, кто сталкивается с трудностями при предобработке данных для моделей машинного обучения и хочет выстроить системный подход к работе с ними.

Тем, кто стремится автоматизировать процессы и управлять данными:
После курса вы научитесь эффективно работать с NumPy и Pandas, создавать визуализации через Matplotlib и Seaborn, а также управлять базами данных с PostgreSQL.

Примеры задач, которые вы решите в тренажёре:
- Анализ температурных данных
- Редактор изображений
- Временной анализ продаж

🎓 Попробуйте первые уроки бесплатно!
В демо-версии курса вы познакомитесь с основами библиотек NumPy, Pandas и Matplotlib, научитесь создавать и редактировать массивы, работать с изображениями и применять эти навыки для решения практических задач в разных областях.
Пройдите 6 практических заданий сразу!
PS. В демо также доступен ИИ-бот ДуДу с code review 24/7.

👉 Регистрация на демо-доступ

Реклама. Информация о рекламодателе

BY BigData




Share with your friend now:
tgoop.com/bigdata_1/915

View MORE
Open in Telegram


Telegram News

Date: |

According to media reports, the privacy watchdog was considering “blacklisting” some online platforms that have repeatedly posted doxxing information, with sources saying most messages were shared on Telegram. How to Create a Private or Public Channel on Telegram? The group’s featured image is of a Pepe frog yelling, often referred to as the “REEEEEEE” meme. Pepe the Frog was created back in 2005 by Matt Furie and has since become an internet symbol for meme culture and “degen” culture. Telegram offers a powerful toolset that allows businesses to create and manage channels, groups, and bots to broadcast messages, engage in conversations, and offer reliable customer support via bots. Clear
from us


Telegram BigData
FROM American