BIGDATA_1 Telegram 1021
🏆 Топ 6 типов моделей ИИ


1. Machine Learning Models (Модели машинного обучения)
- Описание: учатся на размеченных или неразмеченных данных для выявления закономерностей, классификации или прогнозирования результатов. Включают подходы с учителем, без учителя и с частичным обучением.
- Примеры: деревья решений, Random Forest, SVM, XGBoost (с учителем); K-Means, DBSCAN, PCA (без учителя); Label Propagation, Semi-Supervised SVM (с частичным обучением).
- Рабочий процесс: сбор размеченных данных → очистка и предобработка → выбор алгоритма ML → обучение модели → мониторинг и обновление → прогнозирование на новых данных → настройка гиперпараметров → проверка производительности.

2. Deep Learning Models (Модели глубокого обучения)
- Описание: используют многослойные нейронные сети для изучения сложных иерархических паттернов, особенно эффективны для неструктурированных данных (изображения, аудио, текст).
- Примеры: CNN (для изображений), RNN, LSTM (для последовательностей), трансформеры, автоэнкодеры.
- Рабочий процесс: сбор больших объёмов данных → нормализация входных данных → построение нейронной сети → передача входных данных → вычисление ошибки предсказания → повторение циклов обучения → обновление весов → обратное распространение градиентов.

3. Generative Models (Генеративные модели)
- Описание: изучают распределение данных и генерируют новые данные, имитирующие исходные. Применяются для создания контента, синтеза изображений и генерации текста.
- Примеры: GPT-4 (текст), DALL·E, MidJourney (изображения), MusicLM (аудио), StyleGAN (лица), AlphaCode (код).
- Рабочий процесс: обучение на датасете → изучение паттернов данных → получение пользовательского ввода → обработка через модель → вывод сгенерированного медиа → уточнение с помощью обратной связи → генерация нового контента → выборка из выходных данных.

4. Hybrid Models (Гибридные модели)
- Описание: комбинируют несколько техник ИИ (например, правила + нейронные сети) для использования преимуществ каждой. Применяются там, где важны точность и контроль.
- Примеры: RAG (LLM + поиск), ML + боты на основе правил, AutoGPT с инструментами, чат-боты с API.
- Рабочий процесс: объединение типов моделей → обучение компонентов отдельно → построение логической связи → ввод через конвейер → получение конечного результата → разрешение конфликтов → агрегация выходных данных → маршрутизация на основе логики.

5. NLP Models (Модели обработки естественного языка)
- Описание: обрабатывают и понимают человеческий язык. Используются в чат-ботах, переводчиках, сумматорах и виртуальных ассистентах.
- Примеры: BERT, GPT-3.5 / GPT-4, T5, RoBERTa, Claude.
- Рабочий процесс: очистка необработанного текста → токенизация предложений → встраивание слов → применение слоёв внимания → генерация финального текста → постобработка результата → декодирование или классификация → передача в модель.

6. Computer Vision Models (Модели компьютерного зрения)
- Описание: интерпретируют визуальное содержимое, выявляя паттерны и особенности в изображениях или видео. Применяются в распознавании лиц, медицинской визуализации и др.
- Примеры: ResNet, YOLO, VGGNet, EfficientNet, Mask R-CNN.
- Рабочий процесс: загрузка данных изображений → изменение размера и нормализация → извлечение пиксельных признаков → применение слоёв CNN → вывод меток/коробок → постобработка результатов → классификация или локализация → обнаружение пространственных паттернов.

👉 @bigdata_1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21



tgoop.com/bigdata_1/1021
Create:
Last Update:

🏆 Топ 6 типов моделей ИИ


1. Machine Learning Models (Модели машинного обучения)
- Описание: учатся на размеченных или неразмеченных данных для выявления закономерностей, классификации или прогнозирования результатов. Включают подходы с учителем, без учителя и с частичным обучением.
- Примеры: деревья решений, Random Forest, SVM, XGBoost (с учителем); K-Means, DBSCAN, PCA (без учителя); Label Propagation, Semi-Supervised SVM (с частичным обучением).
- Рабочий процесс: сбор размеченных данных → очистка и предобработка → выбор алгоритма ML → обучение модели → мониторинг и обновление → прогнозирование на новых данных → настройка гиперпараметров → проверка производительности.

2. Deep Learning Models (Модели глубокого обучения)
- Описание: используют многослойные нейронные сети для изучения сложных иерархических паттернов, особенно эффективны для неструктурированных данных (изображения, аудио, текст).
- Примеры: CNN (для изображений), RNN, LSTM (для последовательностей), трансформеры, автоэнкодеры.
- Рабочий процесс: сбор больших объёмов данных → нормализация входных данных → построение нейронной сети → передача входных данных → вычисление ошибки предсказания → повторение циклов обучения → обновление весов → обратное распространение градиентов.

3. Generative Models (Генеративные модели)
- Описание: изучают распределение данных и генерируют новые данные, имитирующие исходные. Применяются для создания контента, синтеза изображений и генерации текста.
- Примеры: GPT-4 (текст), DALL·E, MidJourney (изображения), MusicLM (аудио), StyleGAN (лица), AlphaCode (код).
- Рабочий процесс: обучение на датасете → изучение паттернов данных → получение пользовательского ввода → обработка через модель → вывод сгенерированного медиа → уточнение с помощью обратной связи → генерация нового контента → выборка из выходных данных.

4. Hybrid Models (Гибридные модели)
- Описание: комбинируют несколько техник ИИ (например, правила + нейронные сети) для использования преимуществ каждой. Применяются там, где важны точность и контроль.
- Примеры: RAG (LLM + поиск), ML + боты на основе правил, AutoGPT с инструментами, чат-боты с API.
- Рабочий процесс: объединение типов моделей → обучение компонентов отдельно → построение логической связи → ввод через конвейер → получение конечного результата → разрешение конфликтов → агрегация выходных данных → маршрутизация на основе логики.

5. NLP Models (Модели обработки естественного языка)
- Описание: обрабатывают и понимают человеческий язык. Используются в чат-ботах, переводчиках, сумматорах и виртуальных ассистентах.
- Примеры: BERT, GPT-3.5 / GPT-4, T5, RoBERTa, Claude.
- Рабочий процесс: очистка необработанного текста → токенизация предложений → встраивание слов → применение слоёв внимания → генерация финального текста → постобработка результата → декодирование или классификация → передача в модель.

6. Computer Vision Models (Модели компьютерного зрения)
- Описание: интерпретируют визуальное содержимое, выявляя паттерны и особенности в изображениях или видео. Применяются в распознавании лиц, медицинской визуализации и др.
- Примеры: ResNet, YOLO, VGGNet, EfficientNet, Mask R-CNN.
- Рабочий процесс: загрузка данных изображений → изменение размера и нормализация → извлечение пиксельных признаков → применение слоёв CNN → вывод меток/коробок → постобработка результатов → классификация или локализация → обнаружение пространственных паттернов.

👉 @bigdata_1

BY BigData




Share with your friend now:
tgoop.com/bigdata_1/1021

View MORE
Open in Telegram


Telegram News

Date: |

Ng, who had pleaded not guilty to all charges, had been detained for more than 20 months. His channel was said to have contained around 120 messages and photos that incited others to vandalise pro-government shops and commit criminal damage targeting police stations. To view your bio, click the Menu icon and select “View channel info.” Just at this time, Bitcoin and the broader crypto market have dropped to new 2022 lows. The Bitcoin price has tanked 10 percent dropping to $20,000. On the other hand, the altcoin space is witnessing even more brutal correction. Bitcoin has dropped nearly 60 percent year-to-date and more than 70 percent since its all-time high in November 2021. So far, more than a dozen different members have contributed to the group, posting voice notes of themselves screaming, yelling, groaning, and wailing in various pitches and rhythms. Although some crypto traders have moved toward screaming as a coping mechanism, several mental health experts call this therapy a pseudoscience. The crypto community finds its way to engage in one or the other way and share its feelings with other fellow members.
from us


Telegram BigData
FROM American