tgoop.com/ai_machinelearning_big_data/8826
Last Update:
Qwen3-VL-32B превосходи GPT-5 mini и Claude 4 Sonnet* в задачах STEM, визуальных вопросах (VQA), OCR, анализе видео и агентных сценариях.
При этом у модели всего 32 млрд параметров и она сопоставима, а на некоторых бенчмарках даже превосходит модели на 235 млрд параметров (лучше всего показывает себя на *OSWorld*).
Попробовать / HF
Значительно прокачали возможности студии по генерации кода. Сгенерированный проекты можно просматривать или дорабатывать прямо в браузере и деплоить. Также добавили прикольный режим «I’m Feeling Lucky», который генерирует случайную идею для вайбкодинга.
aistudio
На первый взгляд DeepSeek-OCR кажется просто моделью для распознавания текста. Но на деле - это совершенно новый способ того, как ИИ может хранить и обрабатывать информацию.
Обычно модели работают с текстовыми токенами - каждый кусочек слова превращается в отдельный токен, и при длинных документах их число растёт квадратично, делая работу медленной и дорогой. DeepSeek решает эту проблему иначе: она превращает длинный текст в изображение, кодирует его в набор компактных визуальных токенов и затем восстанавливает текст обратно.
Эксперименты показали: даже при 9–10-кратном сжатии точность OCR остаётся около 97%, а при 20-кратном - около 60%. Это доказывает, что плотные визуальные представления способны нести ту же информацию куда эффективнее, чем обычные текстовые токены.
Ключевая инновация DeepSeek- новый энкодер DeepEncoder, который умеет обрабатывать страницы высокого разрешения без переполнения памяти. Он делает это в три шага: сначала применяет локальное внимание для мелких деталей, затем 16× свёрточное сжатие, а потом глобальное внимание для понимания всей структуры документа. Такая последовательная архитектура сохраняет точность, но радикально снижает число токенов и объём активаций.
Авторы также предлагают механизм «забывания»: старый контекст можно постепенно уменьшать в разрешении, чтобы свежая информация оставалась чёткой, а старая занимала меньше места. DeepSeek - как всегда умницы.
DeepSeek-OCR
США входят в фазу "jobless growth"- производительность растёт благодаря ИИ, но найм почти остановился.
Goldman отмечает: компании делают больше с теми же людьми, а реальный рост занятости вне здравоохранения стал отрицательным. Джером Пауэлл описал рынок как “очень мало найма, мало увольнений”, а выпускники всё чаще не могут найти первую работу.
По данным Challenger, планы по найму - на минимуме с 2009 года. Рост есть, рабочих мест - всё меньше.
futurism
Anthropic объявила о публичном релизе Claude Desktop - приложения для Mac и Windows.
На Mac теперь можно делать скриншоты, кликать по окнам, чтобы поделиться контекстом с Claude, и управлять агентом голосом.
Скачать для Mac и Windows
@ai_machinelearning_big_data
#news #ai #ml
