tgoop.com/ai_machinelearning_big_data/8721
Last Update:
Модель на 1 трлн, из них ≈ 50 млрд активны на токен (MoE-архитектура).
Она обучена на 20 трлн+ токенов, специально отобранных для задач логического мышления и рассуждений. Контекст: 128 000 токенов.
Построена на базе Evo-CoT (Evolutionary Chain of Thought) и Linguistics-Unit RL - нового метода обучения для масштабируемых рассуждений. При помощи Evo-CoT модель постепенно улучшает баланс между точностью рассуждений и вычислительной эффективностью. То есть с каждым шагом она пытается делать рассуждения «глубже», но не слишком дорого по ресурсам.
Моделька демонстрирует сильные результаты в задачах кода, математики, логики и фронтенд-генерации.
В архитектуре задействованы Mixture-of-Experts (1/32 активация), MTP слои и маршрутизация экспертов.
Ling-1T показывает, что огромные модели можно сделать не только мощными, но и экономичными.
https://huggingface.co/inclusionAI/Ling-1T
@ai_machinelearning_big_data
#Ling1T #AI #ML #OpenSource #Reasoning #TrillionScale #FP8