tgoop.com/ai_machinelearning_big_data/8689
Last Update:
Google выпустили LiteRT-LM - фреймворк для запуска LLM прямо на устройстве (offline), с минимальной задержкой и без API-вызовов.
Если вы пилите приложения, это полезная штука, потому что:
- Работает на устройстве: нет задержек от удалённых серверов
- Нет расходов на API
- Дает доступ к Локальному GenAI
🔍 Основное
- LiteRT-LM уже используется внутри Gemini Nano / Gemma в Chrome, Chromebook Plus и Pixel Watch.
- Открытый C++ интерфейс (preview) для интеграции в кастомные решения.
- Архитектура: Engine + Session
• Engine хранит базовую модель, ресурсы - общий для всех функций
• Session - контекст для отдельных задач, с возможностью клонирования, копирования “по записи” (Copy-on-Write) и лёгких переключений
- Поддержка аппаратного ускорения (CPU / GPU / NPU) и кроссплатформенность (Android, Linux, macOS, Windows и др.)
- Для Pixel Watch используется минимальный “pipeline” - только необходимые компоненты - чтобы уложиться в ограничения памяти и размера бинарей
Google опенсорснули целый стек для запуска GenAI на устройствах:
- LiteRT быстрый «движок», который запускает отдельные AI-модели на устройстве.
- LiteRT-LM - интерфейс C++ для работы с LLM. Он объединяет сразу несколько инстурментов : кэширование промптов, хранение контекста, клонирование сессий и т.д.
- LLM Inference API - готовые интерфейсы для разработчиков (Kotlin, Swift, JS). Работают поверх LiteRT-LM, чтобы можно было легко встраивать GenAI в приложения.
@ai_machinelearning_big_data
#AI #Google #LiteRT #LiteRTLM #GenAI #EdgeAI #OnDeviceAI #LLM