AI_MACHINELEARNING_BIG_DATA Telegram 8666
🔥 Интересный кейс про ML в картографии

В статье рассказано про развитие детектора Яндекс Карт для распознавания дорожных знаков на панорамах — от бинарного классификатора до нейросетей. Сейчас детектор умеет находить почти все знаки в России. Первая же версия создавалась в 2016 году с помощью небольшого датасета и модели на классических подходах компьютерного зрения. Использовали ACFFeatures + WaldBoost с бинарными решающими деревьями.

Классические методы страдали «близорукостью» — детектили знаки только «в лоб», повороты пропускали, поэтому перешли к новой версии на свёрточных нейросетях и натренировали Faster R-CNN.

Нетривиальные архитектурные решения:
▪️Объединили все знаки ограничения скорости в один класс + дополнительная сеть для распознавания чисел на вырезанном знаке
▪️ То же с направлениями по полосам — детектор находит знак, дополнительная модель выдаёт бинарный вектор направлений
▪️ Создали отдельную модель для обработки найденных знаков многополосности. Полная техническая реализация описана в статье.

🟢 Главная проблема — сбор датасета

Как обычно, всё упёрлось в данные для обучения. Терабайты фотографий улиц прогонять через асессоров — дорого и неэффективно. Выстроили такой процесс: сначала автоматически находить фотографии, где есть дорожные знаки, и только потом отправлять их на разметку асессорам.

🟢 Финальные цифры:
▪️ 300 тысяч фотографий в датасете
▪️ 1,5 миллиона размеченных знаков
▪️200+ поддерживаемых классов знаков

Любопытный факт: самый частый знак в датасете — пешеходный переход.

Практический результат: всё это помогает автоматически обновлять данные в Картах, по которым сервис строит маршруты, выдаёт голосовые подсказки о том, с какой скоростью ехать и тд. В год так вносится более 200 тысяч автообновлений

⚡️ Статья: https://habr.com/ru/companies/yandex/articles/946338/

@ai_machinelearning_big_data

#ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍321🔥252201👏87🥰56😁53🤔22🤣9🤩7👌5❤‍🔥1



tgoop.com/ai_machinelearning_big_data/8666
Create:
Last Update:

🔥 Интересный кейс про ML в картографии

В статье рассказано про развитие детектора Яндекс Карт для распознавания дорожных знаков на панорамах — от бинарного классификатора до нейросетей. Сейчас детектор умеет находить почти все знаки в России. Первая же версия создавалась в 2016 году с помощью небольшого датасета и модели на классических подходах компьютерного зрения. Использовали ACFFeatures + WaldBoost с бинарными решающими деревьями.

Классические методы страдали «близорукостью» — детектили знаки только «в лоб», повороты пропускали, поэтому перешли к новой версии на свёрточных нейросетях и натренировали Faster R-CNN.

Нетривиальные архитектурные решения:
▪️Объединили все знаки ограничения скорости в один класс + дополнительная сеть для распознавания чисел на вырезанном знаке
▪️ То же с направлениями по полосам — детектор находит знак, дополнительная модель выдаёт бинарный вектор направлений
▪️ Создали отдельную модель для обработки найденных знаков многополосности. Полная техническая реализация описана в статье.

🟢 Главная проблема — сбор датасета

Как обычно, всё упёрлось в данные для обучения. Терабайты фотографий улиц прогонять через асессоров — дорого и неэффективно. Выстроили такой процесс: сначала автоматически находить фотографии, где есть дорожные знаки, и только потом отправлять их на разметку асессорам.

🟢 Финальные цифры:
▪️ 300 тысяч фотографий в датасете
▪️ 1,5 миллиона размеченных знаков
▪️200+ поддерживаемых классов знаков

Любопытный факт: самый частый знак в датасете — пешеходный переход.

Практический результат: всё это помогает автоматически обновлять данные в Картах, по которым сервис строит маршруты, выдаёт голосовые подсказки о том, с какой скоростью ехать и тд. В год так вносится более 200 тысяч автообновлений

⚡️ Статья: https://habr.com/ru/companies/yandex/articles/946338/

@ai_machinelearning_big_data

#ai #ml

BY Machinelearning







Share with your friend now:
tgoop.com/ai_machinelearning_big_data/8666

View MORE
Open in Telegram


Telegram News

Date: |

Matt Hussey, editorial director at NEAR Protocol also responded to this news with “#meIRL”. Just as you search “Bear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image. The channel also called on people to turn out for illegal assemblies and listed the things that participants should bring along with them, showing prior planning was in the works for riots. The messages also incited people to hurl toxic gas bombs at police and MTR stations, he added. Unlimited number of subscribers per channel End-to-end encryption is an important feature in messaging, as it's the first step in protecting users from surveillance. How to Create a Private or Public Channel on Telegram?
from us


Telegram Machinelearning
FROM American