tgoop.com/ai_machinelearning_big_data/8666
Last Update:
В статье рассказано про развитие детектора Яндекс Карт для распознавания дорожных знаков на панорамах — от бинарного классификатора до нейросетей. Сейчас детектор умеет находить почти все знаки в России. Первая же версия создавалась в 2016 году с помощью небольшого датасета и модели на классических подходах компьютерного зрения. Использовали ACFFeatures + WaldBoost с бинарными решающими деревьями.
Классические методы страдали «близорукостью» — детектили знаки только «в лоб», повороты пропускали, поэтому перешли к новой версии на свёрточных нейросетях и натренировали Faster R-CNN.
Нетривиальные архитектурные решения:
▪️Объединили все знаки ограничения скорости в один класс + дополнительная сеть для распознавания чисел на вырезанном знаке
▪️ То же с направлениями по полосам — детектор находит знак, дополнительная модель выдаёт бинарный вектор направлений
▪️ Создали отдельную модель для обработки найденных знаков многополосности. Полная техническая реализация описана в статье.
Как обычно, всё упёрлось в данные для обучения. Терабайты фотографий улиц прогонять через асессоров — дорого и неэффективно. Выстроили такой процесс: сначала автоматически находить фотографии, где есть дорожные знаки, и только потом отправлять их на разметку асессорам.
▪️ 300 тысяч фотографий в датасете
▪️ 1,5 миллиона размеченных знаков
▪️200+ поддерживаемых классов знаков
Любопытный факт: самый частый знак в датасете — пешеходный переход.
Практический результат: всё это помогает автоматически обновлять данные в Картах, по которым сервис строит маршруты, выдаёт голосовые подсказки о том, с какой скоростью ехать и тд. В год так вносится более 200 тысяч автообновлений
⚡️ Статья: https://habr.com/ru/companies/yandex/articles/946338/
@ai_machinelearning_big_data
#ai #ml