Warning: file_put_contents(aCache/aDaily/post/ai_machinelearning_big_data/-8006-8007-8008-8009-8006-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Machinelearning@ai_machinelearning_big_data P.8006
AI_MACHINELEARNING_BIG_DATA Telegram 8006
⚡️ 5Gemma: новая коллекция энкодер-декодер моделей от Google.

Инженеры Google DeepMind решили вдохнуть новую жизнь в классический подход «энкодер-декодер» выпустив семейство моделей T5Gemma.

Главная интрига заключается не в том, что они сделали, а в том, как. Вместо того чтобы обучать модели с нуля, они разработали метод «адаптации»: взяли уже готовую и предобученную модель-декодер Gemma 2 и, по сути, пересобрали ее в двухкомпонентную энкодер-декодерную архитектуру.

Метод открыл дорогу для интересных экспериментов. Например, стало возможно создавать «несбалансированные» модели, комбинируя большой энкодер с маленьким декодером, скажем, 9-миллиардный энкодер и 2-миллиардный декодер.

Такая конфигурация идеальна для задач суммаризации, где глубокое понимание исходного текста (работа энкодера) гораздо важнее, чем генерация сложного и витиеватого ответа (работа декодера). Это дает инженерам гибкий инструмент для тонкой настройки баланса между качеством и скоростью работы.

🟡Но самое важное - прирост в производительности.

На тестах T5Gemma показывает результаты на уровне или даже лучше своих «однокомпонентных» аналогов. Асимметричная модель T5Gemma 9B-2B демонстрирует значительно более высокую точность, чем базовая Gemma 2 2B, но при этом скорость инференса у них почти идентична.

Даже сбалансированная T5Gemma 9B-9B оказывается точнее, чем Gemma 2 9B, при сопоставимой задержке. Это прямое доказательство того, что двухкомпонентная архитектура может быть и умнее, и эффективнее.

T5Gemma показывает впечатляющий рост в задачах, требующих логических рассуждений. Например, на математическом тесте GSM8K модель T5Gemma 9B-9B набирает на 9 баллов больше, чем Gemma 2 9B.

Эффект становится еще более выраженным после инструктивной донастройки. Здесь разрыв в производительности резко увеличивается: на бенчмарке MMLU модель T5Gemma 2B-2B IT опережает аналог Gemma 2 2B IT почти на 12 баллов.

🟡Google выложила в открытый доступ целую линейку чекпойнтов:

🟢T5 (Small, Base, Large, XL) на базе Gemma (2B, 9B);

🟢«Несбалансированную» версию 9B-2B для экспериментов;

🟢Модели с разными целями обучения (PrefixLM для генерации, UL2 для качества представлений).


🔜 Попробовать возможности T5Gemma или настроить их под свои нужды можно с помощью блокнота Colab. Модели также доступны в Vertex AI.


📌Лицензирование: Gemma License.


🟡T5gemma: https://developers.googleblog.com/en/t5gemma/
🟡Статья: https://arxiv.org/abs/2504.06225
🟡Скачать модель: https://huggingface.co/collections/google/t5gemma-686ba262fe290b881d21ec86

@ai_machinelearning_big_data

#AI #ML #T5Gemma #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6737🔥24🤔10🥱5



tgoop.com/ai_machinelearning_big_data/8006
Create:
Last Update:

⚡️ 5Gemma: новая коллекция энкодер-декодер моделей от Google.

Инженеры Google DeepMind решили вдохнуть новую жизнь в классический подход «энкодер-декодер» выпустив семейство моделей T5Gemma.

Главная интрига заключается не в том, что они сделали, а в том, как. Вместо того чтобы обучать модели с нуля, они разработали метод «адаптации»: взяли уже готовую и предобученную модель-декодер Gemma 2 и, по сути, пересобрали ее в двухкомпонентную энкодер-декодерную архитектуру.

Метод открыл дорогу для интересных экспериментов. Например, стало возможно создавать «несбалансированные» модели, комбинируя большой энкодер с маленьким декодером, скажем, 9-миллиардный энкодер и 2-миллиардный декодер.

Такая конфигурация идеальна для задач суммаризации, где глубокое понимание исходного текста (работа энкодера) гораздо важнее, чем генерация сложного и витиеватого ответа (работа декодера). Это дает инженерам гибкий инструмент для тонкой настройки баланса между качеством и скоростью работы.

🟡Но самое важное - прирост в производительности.

На тестах T5Gemma показывает результаты на уровне или даже лучше своих «однокомпонентных» аналогов. Асимметричная модель T5Gemma 9B-2B демонстрирует значительно более высокую точность, чем базовая Gemma 2 2B, но при этом скорость инференса у них почти идентична.

Даже сбалансированная T5Gemma 9B-9B оказывается точнее, чем Gemma 2 9B, при сопоставимой задержке. Это прямое доказательство того, что двухкомпонентная архитектура может быть и умнее, и эффективнее.

T5Gemma показывает впечатляющий рост в задачах, требующих логических рассуждений. Например, на математическом тесте GSM8K модель T5Gemma 9B-9B набирает на 9 баллов больше, чем Gemma 2 9B.

Эффект становится еще более выраженным после инструктивной донастройки. Здесь разрыв в производительности резко увеличивается: на бенчмарке MMLU модель T5Gemma 2B-2B IT опережает аналог Gemma 2 2B IT почти на 12 баллов.

🟡Google выложила в открытый доступ целую линейку чекпойнтов:

🟢T5 (Small, Base, Large, XL) на базе Gemma (2B, 9B);

🟢«Несбалансированную» версию 9B-2B для экспериментов;

🟢Модели с разными целями обучения (PrefixLM для генерации, UL2 для качества представлений).


🔜 Попробовать возможности T5Gemma или настроить их под свои нужды можно с помощью блокнота Colab. Модели также доступны в Vertex AI.


📌Лицензирование: Gemma License.


🟡T5gemma: https://developers.googleblog.com/en/t5gemma/
🟡Статья: https://arxiv.org/abs/2504.06225
🟡Скачать модель: https://huggingface.co/collections/google/t5gemma-686ba262fe290b881d21ec86

@ai_machinelearning_big_data

#AI #ML #T5Gemma #Google

BY Machinelearning







Share with your friend now:
tgoop.com/ai_machinelearning_big_data/8006

View MORE
Open in Telegram


Telegram News

Date: |

A Telegram channel is used for various purposes, from sharing helpful content to implementing a business strategy. In addition, you can use your channel to build and improve your company image, boost your sales, make profits, enhance customer loyalty, and more. Among the requests, the Brazilian electoral Court wanted to know if they could obtain data on the origins of malicious content posted on the platform. According to the TSE, this would enable the authorities to track false content and identify the user responsible for publishing it in the first place. But a Telegram statement also said: "Any requests related to political censorship or limiting human rights such as the rights to free speech or assembly are not and will not be considered." During a meeting with the president of the Supreme Electoral Court (TSE) on June 6, Telegram's Vice President Ilya Perekopsky announced the initiatives. According to the executive, Brazil is the first country in the world where Telegram is introducing the features, which could be expanded to other countries facing threats to democracy through the dissemination of false content. Find your optimal posting schedule and stick to it. The peak posting times include 8 am, 6 pm, and 8 pm on social media. Try to publish serious stuff in the morning and leave less demanding content later in the day.
from us


Telegram Machinelearning
FROM American