AI_MACHINELEARNING_BIG_DATA Telegram 7943
🌟 FlexTok: адаптивная 1D-токенизация изображений от Apple.

FlexTok - метод токенизации изображений, который преобразует 2D-изображения в упорядоченные 1D-последовательности переменной длины.

Его цель - сократить объем данных, необходимых для обучения генеративных моделей, и при этом оставить достаточную информацию для качественной реконструкции и генерации.

В отличие от традиционных подходов, где число токенов фиксировано и зависит только от размера изображения, FlexTok подстраивается под сложность контента: простейшая сцена может кодироваться несколькими токенами, а сложная - десятками и сотнями .

FlexTok, это по сути, пайплайн из 3 компонентов: ViT‑энкодер, квантование регистров и маскирование внимания:

ViT‑энкодер с набором «регистровых» токенов читает латентные представления VAE‑GAN и конденсирует их в 1D-последовательность до 256 регистров .

Затем, с помощью FSQ‑квантования, каждый регистр дискретизируется в код из заранее определенного словаря размером ~64 000.
На этом этапе применяется "nested dropout": во время обучения случайно обрезаются последние токены, чтобы модель научилась упорядочивать информацию от грубых форм к деталям.

Параллельно применяется авторегрессионная маска внимания: каждый токен в цепочке видит только те, что были до него, и не знает о тех, что идут после. Это заставляет модель генерировать изображения шаг за шагом, от первого токена к последнему, и упрощает ей задачу прогнозирования следующих элементов.

Декодер в FlexTok - это модель rectified flow, которая на вход берет укороченные токены и слегка зашумленные латенты VAE и учится предсказывать тот шум, который нужно убрать, чтобы вернуть исходное представление.

Чтобы обучение шло быстрее и давало более точные результаты, добавляют REPA‑Loss: он сравнивает промежуточные признаки с векторами из DINOv2‑L. Благодаря этому даже при очень жесткой компрессии (от 1 до 256 токенов), FlexTok успешно восстанавливает детали изображения.

FlexTok легко встраивается в текстово‑ориентированные модели и может улучшить соответствие изображения описанию, даже если число токенов меняется. К тому же его адаптивная токенизация применима не только к картинкам, но и к аудио или видео.

▶️Набор токенизаторов:

🟢Flextok_d12_d12_in1k - 12\12 слоев энкодер-декодер, датасет IN1K;
🟢Flextok_d18_d18_in1k - 18\18 слоев энкодер-декодер, датасет IN1K;
🟢Flextok_d18_d28_in1k - 18\28 слоев энкодер-декодер, датасет IN1K;
🟢Flextok_d18_d28_dfm - 18\28 слоев энкодер-декодер, датасет DFN.

▶️ VAE:

🟠Flextok_vae_c4 - 4 каналов латента, коэффициент понижающей дискретизации 8;
🟠Flextok_vae_c8 - 8 каналов латента, коэффициент понижающей дискретизации 8;
🟠Flextok_vae_c16 - 16 каналов латента, коэффициент понижающей дискретизации 8.


🟡Страница проекта
🟡Набор на HF
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Tokenizer #Flextok #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4113👍11🥰3



tgoop.com/ai_machinelearning_big_data/7943
Create:
Last Update:

🌟 FlexTok: адаптивная 1D-токенизация изображений от Apple.

FlexTok - метод токенизации изображений, который преобразует 2D-изображения в упорядоченные 1D-последовательности переменной длины.

Его цель - сократить объем данных, необходимых для обучения генеративных моделей, и при этом оставить достаточную информацию для качественной реконструкции и генерации.

В отличие от традиционных подходов, где число токенов фиксировано и зависит только от размера изображения, FlexTok подстраивается под сложность контента: простейшая сцена может кодироваться несколькими токенами, а сложная - десятками и сотнями .

FlexTok, это по сути, пайплайн из 3 компонентов: ViT‑энкодер, квантование регистров и маскирование внимания:

ViT‑энкодер с набором «регистровых» токенов читает латентные представления VAE‑GAN и конденсирует их в 1D-последовательность до 256 регистров .

Затем, с помощью FSQ‑квантования, каждый регистр дискретизируется в код из заранее определенного словаря размером ~64 000.
На этом этапе применяется "nested dropout": во время обучения случайно обрезаются последние токены, чтобы модель научилась упорядочивать информацию от грубых форм к деталям.

Параллельно применяется авторегрессионная маска внимания: каждый токен в цепочке видит только те, что были до него, и не знает о тех, что идут после. Это заставляет модель генерировать изображения шаг за шагом, от первого токена к последнему, и упрощает ей задачу прогнозирования следующих элементов.

Декодер в FlexTok - это модель rectified flow, которая на вход берет укороченные токены и слегка зашумленные латенты VAE и учится предсказывать тот шум, который нужно убрать, чтобы вернуть исходное представление.

Чтобы обучение шло быстрее и давало более точные результаты, добавляют REPA‑Loss: он сравнивает промежуточные признаки с векторами из DINOv2‑L. Благодаря этому даже при очень жесткой компрессии (от 1 до 256 токенов), FlexTok успешно восстанавливает детали изображения.

FlexTok легко встраивается в текстово‑ориентированные модели и может улучшить соответствие изображения описанию, даже если число токенов меняется. К тому же его адаптивная токенизация применима не только к картинкам, но и к аудио или видео.

▶️Набор токенизаторов:

🟢Flextok_d12_d12_in1k - 12\12 слоев энкодер-декодер, датасет IN1K;
🟢Flextok_d18_d18_in1k - 18\18 слоев энкодер-декодер, датасет IN1K;
🟢Flextok_d18_d28_in1k - 18\28 слоев энкодер-декодер, датасет IN1K;
🟢Flextok_d18_d28_dfm - 18\28 слоев энкодер-декодер, датасет DFN.

▶️ VAE:

🟠Flextok_vae_c4 - 4 каналов латента, коэффициент понижающей дискретизации 8;
🟠Flextok_vae_c8 - 8 каналов латента, коэффициент понижающей дискретизации 8;
🟠Flextok_vae_c16 - 16 каналов латента, коэффициент понижающей дискретизации 8.


🟡Страница проекта
🟡Набор на HF
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Tokenizer #Flextok #Apple

BY Machinelearning






Share with your friend now:
tgoop.com/ai_machinelearning_big_data/7943

View MORE
Open in Telegram


Telegram News

Date: |

Deputy District Judge Peter Hui sentenced computer technician Ng Man-ho on Thursday, a month after the 27-year-old, who ran a Telegram group called SUCK Channel, was found guilty of seven charges of conspiring to incite others to commit illegal acts during the 2019 extradition bill protests and subsequent months. The administrator of a telegram group, "Suck Channel," was sentenced to six years and six months in prison for seven counts of incitement yesterday. The channel also called on people to turn out for illegal assemblies and listed the things that participants should bring along with them, showing prior planning was in the works for riots. The messages also incited people to hurl toxic gas bombs at police and MTR stations, he added. Among the requests, the Brazilian electoral Court wanted to know if they could obtain data on the origins of malicious content posted on the platform. According to the TSE, this would enable the authorities to track false content and identify the user responsible for publishing it in the first place. During the meeting with TSE Minister Edson Fachin, Perekopsky also mentioned the TSE channel on the platform as one of the firm's key success stories. Launched as part of the company's commitments to tackle the spread of fake news in Brazil, the verified channel has attracted more than 184,000 members in less than a month.
from us


Telegram Machinelearning
FROM American