tgoop.com/ai_machinelearning_big_data/7544
Last Update:
Джим Фан (Директор по ИИ в NVIDIA) рассказал, что их команда добилась впечатляющего результата: роботы научились ходить и ориентироваться в пространстве без обучения в реальном мире.
Всё обучение прошло в симуляции, и после этого роботы сразу были отправлены на выполнение задач в открытом пространстве.
- Нет физических ограничений. В симуляции робот может падать и вставать хоть миллион раз без поломки. В реальности он бы ломался.
- Ускорение времени. В симуляции нет ограничений «реального времени» — можно крутить процесс с любой скоростью, насколько позволяет железо.
- Параллельное обучение. Можно сразу запускать много виртуальных роботов и собирать опыт с них всех одновременно.
Для обучения не понадобились гигантские модели -всего 1.5 миллиона параметров (не миллиардов!) хватило, чтобы смоделировать «подсознательную механику» движения человеческого тела.
Очень мощный шаг для развития embodied AI и робототехники 🚀
@ai_machinelearning_big_data
#ai #robots #nvidia #future