AI_MACHINELEARNING_BIG_DATA Telegram 7396
⚡️ FAIR опубликовала новые инструменты для восприятия и взаимодействия ИИ с миром.

Команда Fundamental AI Research (FAIR) компании Марка Цукерберга представила серию новых разработок: методики и модели, улучшающие компьютерное зрение, 3D-локализацию объектов и совместное обучение языковых агентов. Все модели, техотчеты, датасеты и код этих проектов уже доступны на платформах Hugging Face и GitHub.

🔜 Perception Encoder: «Глаза» для ИИ нового поколения

Perception Encoder - новый виток развития в сфере обработки визуальной информации. Модель, обученная с помощью этой методики на масштабных данных, превосходит аналоги в задачах классификации изображений и видео, включая сложные сценарии — распознавание ската, зарывшегося в морское дно, или крошечной птицы на заднем плане снимка. Благодаря интеграции с LLM, Encoder улучшает ответы на визуальные вопросы, описание сцен и понимание пространственных отношений между объектами.
🟡Модель 🖥Github🟡Датасет🟡Техотчет

🔜 Perception Language Model: Расширенное понимание задач визуального восприятия.

Для задач, требующих анализа видео и текста, Meta выпустила Perception Language Model (PLM). Ее обучали на 2,5 млн. новых аннотированных видеозаписей — это крупнейший датасет для понимания действий и контекста в динамике. PLM доступна в трёх вариантах (1, 3 и 8 млрд параметров). Дополнительный бонус — PLM-VideoBench, бенчмарк для оценки тонкого понимания сцен, который заполняет пробелы существующих тестов.
🟡Модель 🖥GitHub 🟡Датасет 🟡Техотчет

🔜 Locate 3D: Роботы учатся «слышать» запросы.

Как заставить робот найти красную чашку на столе или вазу возле телевизора? Locate 3D решает эту задачу через анализ 3D-точечных облаков и текстовых подсказок. Модель учитывает пространственные связи и контекст, отличая «вазу у TV» от «вазы на столе». В основе — трехэтапный пайплайн: предобработка данных, кодирование 3D-сцены и декодирование запроса. Для обучения использовали 130 тыс. аннотаций из ARKitScenes и ScanNet, что вдвое увеличило объём доступных данных для локализации объектов.
🟡Модель 🟡Демо 🟡Датасет 🟡Техотчет

🔜 Dynamic Byte Latent Transformer: Эффективность без токенизации.

Dynamic Byte Latent Transformer - архитектура, которая работает на уровне байтов, а не токенов, что повышает устойчивость к ошибкам, ускоряет обработку и "отменяет" необходимость токенизации для масштабирования. На тесте CUTE модель показывает преимущество в +55 пунктов против традиционных подходов.
🟡Модель 🖥GitHub 🟡Техотчет

🔜 Collaborative Reasoner: ИИ-агенты учатся работать в команде.

Совместное решение задач — следующий этап развития ИИ. Collaborative Reasoner — это фреймворк, где два агента ведут диалог, чтобы прийти к общему решению. Они могут спорить, аргументировать и согласовывать ответы на сложные вопросы. Для обучения используют синтетические диалоги, которые генерирует сама модель. Результаты впечатляют: на некоторых задачах совместная работа даёт прирост эффективности до 29% по сравнению с одиночным агентом.
🖥GitHub 🟡Техотчет


🟢Статья


@ai_machinelearning_big_data

#AI #ML #LLM #CV #NLP #FAIR
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/ai_machinelearning_big_data/7396
Create:
Last Update:

⚡️ FAIR опубликовала новые инструменты для восприятия и взаимодействия ИИ с миром.

Команда Fundamental AI Research (FAIR) компании Марка Цукерберга представила серию новых разработок: методики и модели, улучшающие компьютерное зрение, 3D-локализацию объектов и совместное обучение языковых агентов. Все модели, техотчеты, датасеты и код этих проектов уже доступны на платформах Hugging Face и GitHub.

🔜 Perception Encoder: «Глаза» для ИИ нового поколения

Perception Encoder - новый виток развития в сфере обработки визуальной информации. Модель, обученная с помощью этой методики на масштабных данных, превосходит аналоги в задачах классификации изображений и видео, включая сложные сценарии — распознавание ската, зарывшегося в морское дно, или крошечной птицы на заднем плане снимка. Благодаря интеграции с LLM, Encoder улучшает ответы на визуальные вопросы, описание сцен и понимание пространственных отношений между объектами.
🟡Модель 🖥Github🟡Датасет🟡Техотчет

🔜 Perception Language Model: Расширенное понимание задач визуального восприятия.

Для задач, требующих анализа видео и текста, Meta выпустила Perception Language Model (PLM). Ее обучали на 2,5 млн. новых аннотированных видеозаписей — это крупнейший датасет для понимания действий и контекста в динамике. PLM доступна в трёх вариантах (1, 3 и 8 млрд параметров). Дополнительный бонус — PLM-VideoBench, бенчмарк для оценки тонкого понимания сцен, который заполняет пробелы существующих тестов.
🟡Модель 🖥GitHub 🟡Датасет 🟡Техотчет

🔜 Locate 3D: Роботы учатся «слышать» запросы.

Как заставить робот найти красную чашку на столе или вазу возле телевизора? Locate 3D решает эту задачу через анализ 3D-точечных облаков и текстовых подсказок. Модель учитывает пространственные связи и контекст, отличая «вазу у TV» от «вазы на столе». В основе — трехэтапный пайплайн: предобработка данных, кодирование 3D-сцены и декодирование запроса. Для обучения использовали 130 тыс. аннотаций из ARKitScenes и ScanNet, что вдвое увеличило объём доступных данных для локализации объектов.
🟡Модель 🟡Демо 🟡Датасет 🟡Техотчет

🔜 Dynamic Byte Latent Transformer: Эффективность без токенизации.

Dynamic Byte Latent Transformer - архитектура, которая работает на уровне байтов, а не токенов, что повышает устойчивость к ошибкам, ускоряет обработку и "отменяет" необходимость токенизации для масштабирования. На тесте CUTE модель показывает преимущество в +55 пунктов против традиционных подходов.
🟡Модель 🖥GitHub 🟡Техотчет

🔜 Collaborative Reasoner: ИИ-агенты учатся работать в команде.

Совместное решение задач — следующий этап развития ИИ. Collaborative Reasoner — это фреймворк, где два агента ведут диалог, чтобы прийти к общему решению. Они могут спорить, аргументировать и согласовывать ответы на сложные вопросы. Для обучения используют синтетические диалоги, которые генерирует сама модель. Результаты впечатляют: на некоторых задачах совместная работа даёт прирост эффективности до 29% по сравнению с одиночным агентом.
🖥GitHub 🟡Техотчет


🟢Статья


@ai_machinelearning_big_data

#AI #ML #LLM #CV #NLP #FAIR

BY Machinelearning




Share with your friend now:
tgoop.com/ai_machinelearning_big_data/7396

View MORE
Open in Telegram


Telegram News

Date: |

Telegram Channels requirements & features Select “New Channel” The channel also called on people to turn out for illegal assemblies and listed the things that participants should bring along with them, showing prior planning was in the works for riots. The messages also incited people to hurl toxic gas bombs at police and MTR stations, he added. Among the requests, the Brazilian electoral Court wanted to know if they could obtain data on the origins of malicious content posted on the platform. According to the TSE, this would enable the authorities to track false content and identify the user responsible for publishing it in the first place. fire bomb molotov November 18 Dylan Hollingsworth yau ma tei
from us


Telegram Machinelearning
FROM American