Warning: file_put_contents(aCache/aDaily/post/ai_machinelearning_big_data/-7318-7319-7320-7321-7318-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Machinelearning@ai_machinelearning_big_data P.7321
AI_MACHINELEARNING_BIG_DATA Telegram 7321
✔️ Учёные Яндекса, НИУ ВШЭ,MIT, ISTA и KAUST разработали новый метод сжатия LLM без использования данных

Недавно был представлен HIGGS (Hadamard Incoherence with Gaussian MSE-optimal GridS) — data-free метод квантизации, который позволяет запускать большие языковые модели локально, за минуты, без GPU.

🔥 Особенности:
🟢Работает без обучающих данных (data-free)
🟢Квантизует даже модели масштаба DeepSeek R1 (671B) и Llama 4 Maverick (400B)
🟢Полностью open-source

📈 Результаты:
🟠Лучшее соотношение качество / размер среди всех data-free методов (NF4, HQQ и др.)
🟠Проверено на Llama 3, Qwen2.5
🟠Статья принята на NAACL 2025

Применение:
▶️Прототипирование без серверов и долгих калибровок
▶️Демократизация доступа к LLM
▶️Подходит для стартапов, исследователей, независимых лабораторий, образовательных и ограниченных сред

🛠 Установка:
pip install flute-kernel

🌟 Пример:
python 
from transformers import AutoModelForCausalLM, AutoTokenizer, HiggsConfig

model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-9b-it",
quantization_config=HiggsConfig(bits=4),
device_map="auto",
)


🟡Paper
🟡Hugging Face
🟡GitHub

@ai_machinelearning_big_data

#quantization #LLM #opensource #HIGGS #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍118🔥3932🥱8👏2



tgoop.com/ai_machinelearning_big_data/7321
Create:
Last Update:

✔️ Учёные Яндекса, НИУ ВШЭ,MIT, ISTA и KAUST разработали новый метод сжатия LLM без использования данных

Недавно был представлен HIGGS (Hadamard Incoherence with Gaussian MSE-optimal GridS) — data-free метод квантизации, который позволяет запускать большие языковые модели локально, за минуты, без GPU.

🔥 Особенности:
🟢Работает без обучающих данных (data-free)
🟢Квантизует даже модели масштаба DeepSeek R1 (671B) и Llama 4 Maverick (400B)
🟢Полностью open-source

📈 Результаты:
🟠Лучшее соотношение качество / размер среди всех data-free методов (NF4, HQQ и др.)
🟠Проверено на Llama 3, Qwen2.5
🟠Статья принята на NAACL 2025

Применение:
▶️Прототипирование без серверов и долгих калибровок
▶️Демократизация доступа к LLM
▶️Подходит для стартапов, исследователей, независимых лабораторий, образовательных и ограниченных сред

🛠 Установка:
pip install flute-kernel

🌟 Пример:

python 
from transformers import AutoModelForCausalLM, AutoTokenizer, HiggsConfig

model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-9b-it",
quantization_config=HiggsConfig(bits=4),
device_map="auto",
)


🟡Paper
🟡Hugging Face
🟡GitHub

@ai_machinelearning_big_data

#quantization #LLM #opensource #HIGGS #ai

BY Machinelearning







Share with your friend now:
tgoop.com/ai_machinelearning_big_data/7321

View MORE
Open in Telegram


Telegram News

Date: |

While some crypto traders move toward screaming as a coping mechanism, many mental health experts have argued that “scream therapy” is pseudoscience. Scientific research or no, it obviously feels good. SUCK Channel Telegram Hui said the time period and nature of some offences “overlapped” and thus their prison terms could be served concurrently. The judge ordered Ng to be jailed for a total of six years and six months. Public channels are public to the internet, regardless of whether or not they are subscribed. A public channel is displayed in search results and has a short address (link). Some Telegram Channels content management tips
from us


Telegram Machinelearning
FROM American