AI_MACHINELEARNING_BIG_DATA Telegram 7083
📌Ученые обнаружили сходство между мозгом человека и нейросетями в принципах обработки языка.

Совместное исследование Google Research, Принстонского университета, NYU и Еврейского университета в Иерусалиме нашло параллели в обработке естественного языка человеческим мозгом и большими языковыми моделями.

Используя внутричерепные электроды, ученые зафиксировали нейронную активность во время спонтанных диалогов и сравнили ее с внутренними представлениями модели Whisper, разработанной для преобразования речи в текст. Оказалось, что речевые эмбеддинги Whisper коррелируют с активностью в слуховых зонах мозга, а языковые — с областями, ответственными за семантику.

Эксперименты подтвердили догадки: при восприятии речи сначала активируется верхняя височная извилина (STG), обрабатывающая акустические сигналы, а через несколько сотен миллисекунд включается зона Брока (IFG), связанная с декодированием смысла. При воспроизведении речи последовательность обратная: IFG активируется за 500 мс до артикуляции, затем моторная кора планирует движение, а после произнесения слова STG «проверяет» результат. Эти паттерны совпали с динамикой эмбедингов Whisper, хотя модель не обучалась на нейробиологических данных.

Другое интересное совпадение - мозг и LLM используют предсказание следующего слова как ключевую стратегию. Как показали опыты, слушатель бессознательно предугадывает следующие слова, а ошибка предсказания вызывает «нейронное удивление» — механизм, аналогичный обучению с подкреплением в ML. Но архитектурные механизмы у мозга и LLM разные: трансформеры обрабатывают сотни слов параллельно, тогда как мозг анализирует информацию последовательно.

Несмотря на общую «мягкую иерархию» обработки (например, смешение семантических и акустических признаков в IFG и STG), биологические структуры мозга принципиально отличаются от нейронных сетей.

Исследователи подчеркивают: языковые модели (типа ChatGPT) не понимают, как люди общаются в реальной жизни (например, не чувствуют эмоций или культурных особенностей), и не учатся так, как это делает мозг человека с детства. Однако их эмбединги оказались очень полезными для изучения того, как мозг обрабатывает речь.

Ученые надеются, что эти открытия помогут создать нейросети, которые смогут обучаться как люди — медленно, шаг за шагом. А пока Whisper, неожиданно стал «зеркалом» принципов нашего мышления. Кто знает, может, через пару лет ИИ начнёт шутить с нами за чашкой кофе — как друг или коллега по работе.

🟡Статья
🟡Исследование


@ai_machinelearning_big_data

#AI #ML #Research #NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8926🔥20🤣9🌭7😁2😭1



tgoop.com/ai_machinelearning_big_data/7083
Create:
Last Update:

📌Ученые обнаружили сходство между мозгом человека и нейросетями в принципах обработки языка.

Совместное исследование Google Research, Принстонского университета, NYU и Еврейского университета в Иерусалиме нашло параллели в обработке естественного языка человеческим мозгом и большими языковыми моделями.

Используя внутричерепные электроды, ученые зафиксировали нейронную активность во время спонтанных диалогов и сравнили ее с внутренними представлениями модели Whisper, разработанной для преобразования речи в текст. Оказалось, что речевые эмбеддинги Whisper коррелируют с активностью в слуховых зонах мозга, а языковые — с областями, ответственными за семантику.

Эксперименты подтвердили догадки: при восприятии речи сначала активируется верхняя височная извилина (STG), обрабатывающая акустические сигналы, а через несколько сотен миллисекунд включается зона Брока (IFG), связанная с декодированием смысла. При воспроизведении речи последовательность обратная: IFG активируется за 500 мс до артикуляции, затем моторная кора планирует движение, а после произнесения слова STG «проверяет» результат. Эти паттерны совпали с динамикой эмбедингов Whisper, хотя модель не обучалась на нейробиологических данных.

Другое интересное совпадение - мозг и LLM используют предсказание следующего слова как ключевую стратегию. Как показали опыты, слушатель бессознательно предугадывает следующие слова, а ошибка предсказания вызывает «нейронное удивление» — механизм, аналогичный обучению с подкреплением в ML. Но архитектурные механизмы у мозга и LLM разные: трансформеры обрабатывают сотни слов параллельно, тогда как мозг анализирует информацию последовательно.

Несмотря на общую «мягкую иерархию» обработки (например, смешение семантических и акустических признаков в IFG и STG), биологические структуры мозга принципиально отличаются от нейронных сетей.

Исследователи подчеркивают: языковые модели (типа ChatGPT) не понимают, как люди общаются в реальной жизни (например, не чувствуют эмоций или культурных особенностей), и не учатся так, как это делает мозг человека с детства. Однако их эмбединги оказались очень полезными для изучения того, как мозг обрабатывает речь.

Ученые надеются, что эти открытия помогут создать нейросети, которые смогут обучаться как люди — медленно, шаг за шагом. А пока Whisper, неожиданно стал «зеркалом» принципов нашего мышления. Кто знает, может, через пару лет ИИ начнёт шутить с нами за чашкой кофе — как друг или коллега по работе.

🟡Статья
🟡Исследование


@ai_machinelearning_big_data

#AI #ML #Research #NLP

BY Machinelearning





Share with your friend now:
tgoop.com/ai_machinelearning_big_data/7083

View MORE
Open in Telegram


Telegram News

Date: |

While the character limit is 255, try to fit into 200 characters. This way, users will be able to take in your text fast and efficiently. Reveal the essence of your channel and provide contact information. For example, you can add a bot name, link to your pricing plans, etc. The visual aspect of channels is very critical. In fact, design is the first thing that a potential subscriber pays attention to, even though unconsciously. Select: Settings – Manage Channel – Administrators – Add administrator. From your list of subscribers, select the correct user. A new window will appear on the screen. Check the rights you’re willing to give to your administrator. How to create a business channel on Telegram? (Tutorial) Telegram Android app: Open the chats list, click the menu icon and select “New Channel.”
from us


Telegram Machinelearning
FROM American