AI_MACHINELEARNING_BIG_DATA Telegram 5790
⚡️ Apple Depth Pro: Карта глубина с расчетом фокусного расстояния менее чем за секунду.

Depth Pro - базовая модель для метрической монокулярной оценки глубины по по одному изображению в режиме zero-shot. Она позволяет синтезировать Hi-Res карты глубины с высокой точностью определения границ объектов, воспроизводя их форму, расположение и абсолютный масштаб без использования метаданных камеры.

Архитектура модели основана на применении энкодеров ViT к фрагментам изображения, извлеченным в нескольких масштабах.

Используются два кодировщика ViT: фрагментный энкодер, обрабатывающий блоки изображения для изучения масштабно-инвариантных представлений и энкодер изображения, фиксирующий предсказания в глобальном контексте.

Модель работает с фиксированным разрешением 1536x1536 пикселей, а каждый из модулей ViT - 384x384 пикселей.

Для обучения используются 5 целевых функций (LMAE, LMSE, LMAGE, LMALE и LMSGE ) на основе канонической обратной глубины и применяется двухэтапный план обучения. Набор данных состоит из 43 датасетов.

Первый этап учит обобщающим признакам, основанным на смеси реальных и синтетических данных, а второй — повышению резкости границ на синтетических данных с точной информацией о глубине.

Модель показала высокую точность на различных наборах данных (Booster, ETH3D, Middlebury, nuScenes, Sintel и Sun-RGBD91011) .

Depth Pro превзошла другие методы по точности оценки фокусного расстояния на наборах данных DDDP, FiveK, PPR10K, RAISE, SPAQ и ZOOM.

Скорость инференса, замеренная в тестировании - 0,3 секунды на генерацию карты глубины 2,25-мегапиксельного изображения.

▶️ Локальная установка и инференс в CLI или Python:

# setting up a venv:
conda create -n depth-pro -y python=3.9
conda activate depth-pro
pip install -e .

# Download pretrained checkpoints:
source get_pretrained_models.sh

# Run the inference from CLI on a single image:
depth-pro-run -i ./data/example.jpg

# Running from python
from PIL import Image
import depth_pro

model, transform = depth_pro.create_model_and_transforms()
model.eval()
image, _, f_px = depth_pro.load_rgb(image_path)
image = transform(image)
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"] # Depth in [m].
focallength_px = prediction["focallength_px"] # Focal length in pixels.



📌Лицензирование : Apple Sample Code license.



🟡Модель
🟡Demo
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #ViT #Depth #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥39👍187🥰1



tgoop.com/ai_machinelearning_big_data/5790
Create:
Last Update:

⚡️ Apple Depth Pro: Карта глубина с расчетом фокусного расстояния менее чем за секунду.

Depth Pro - базовая модель для метрической монокулярной оценки глубины по по одному изображению в режиме zero-shot. Она позволяет синтезировать Hi-Res карты глубины с высокой точностью определения границ объектов, воспроизводя их форму, расположение и абсолютный масштаб без использования метаданных камеры.

Архитектура модели основана на применении энкодеров ViT к фрагментам изображения, извлеченным в нескольких масштабах.

Используются два кодировщика ViT: фрагментный энкодер, обрабатывающий блоки изображения для изучения масштабно-инвариантных представлений и энкодер изображения, фиксирующий предсказания в глобальном контексте.

Модель работает с фиксированным разрешением 1536x1536 пикселей, а каждый из модулей ViT - 384x384 пикселей.

Для обучения используются 5 целевых функций (LMAE, LMSE, LMAGE, LMALE и LMSGE ) на основе канонической обратной глубины и применяется двухэтапный план обучения. Набор данных состоит из 43 датасетов.

Первый этап учит обобщающим признакам, основанным на смеси реальных и синтетических данных, а второй — повышению резкости границ на синтетических данных с точной информацией о глубине.

Модель показала высокую точность на различных наборах данных (Booster, ETH3D, Middlebury, nuScenes, Sintel и Sun-RGBD91011) .

Depth Pro превзошла другие методы по точности оценки фокусного расстояния на наборах данных DDDP, FiveK, PPR10K, RAISE, SPAQ и ZOOM.

Скорость инференса, замеренная в тестировании - 0,3 секунды на генерацию карты глубины 2,25-мегапиксельного изображения.

▶️ Локальная установка и инференс в CLI или Python:

# setting up a venv:
conda create -n depth-pro -y python=3.9
conda activate depth-pro
pip install -e .

# Download pretrained checkpoints:
source get_pretrained_models.sh

# Run the inference from CLI on a single image:
depth-pro-run -i ./data/example.jpg

# Running from python
from PIL import Image
import depth_pro

model, transform = depth_pro.create_model_and_transforms()
model.eval()
image, _, f_px = depth_pro.load_rgb(image_path)
image = transform(image)
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"] # Depth in [m].
focallength_px = prediction["focallength_px"] # Focal length in pixels.



📌Лицензирование : Apple Sample Code license.



🟡Модель
🟡Demo
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #ViT #Depth #Apple

BY Machinelearning







Share with your friend now:
tgoop.com/ai_machinelearning_big_data/5790

View MORE
Open in Telegram


Telegram News

Date: |

In 2018, Telegram’s audience reached 200 million people, with 500,000 new users joining the messenger every day. It was launched for iOS on 14 August 2013 and Android on 20 October 2013. The group also hosted discussions on committing arson, Judge Hui said, including setting roadblocks on fire, hurling petrol bombs at police stations and teaching people to make such weapons. The conversation linked to arson went on for two to three months, Hui said. 5Telegram Channel avatar size/dimensions Although some crypto traders have moved toward screaming as a coping mechanism, several mental health experts call this therapy a pseudoscience. The crypto community finds its way to engage in one or the other way and share its feelings with other fellow members. Image: Telegram.
from us


Telegram Machinelearning
FROM American